Jialiang Jiang, Kwok Fai Lam, Eric Ho Yin Lau, Guosheng Yin, Yun Lin, Benjamin John Cowling
{"title":"Protection and waning of vaccine-induced, natural and hybrid immunity to SARS-CoV-2 in Hong Kong.","authors":"Jialiang Jiang, Kwok Fai Lam, Eric Ho Yin Lau, Guosheng Yin, Yun Lin, Benjamin John Cowling","doi":"10.1080/14760584.2025.2485252","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the COVID-19 pandemic transitions into its fourth year, understanding the dynamics of immunity is critical for implementing effective public health measures. This study examines vaccine-induced, natural, and hybrid immunity to SARS-CoV-2 in Hong Kong, focusing on their protective effectiveness and waning characteristics against infection during the Omicron BA.1/2 dominant period.</p><p><strong>Research design and methods: </strong>We conducted a territory-wide retrospective cohort study using vaccination and infection records from the Hong Kong Department of Health. The analysis included over 6.5 million adults, applying the Andersen-Gill model to estimate protective effectiveness while addressing selection bias through inverse probability weighting.</p><p><strong>Results: </strong>Vaccine-induced immunity peaked one month after the first dose but waned rapidly, while boosters significantly prolonged protection. Infection-induced immunity showed higher initial effectiveness but declined faster than vaccine-induced immunity. Hybrid immunity provided the most durable protection. mRNA vaccines (Comirnaty) demonstrated greater effectiveness and slower waning compared to inactivated vaccines (CoronaVac).</p><p><strong>Conclusions: </strong>Hybrid immunity represents the most effective strategy for sustained protection against SARS-CoV-2. Public health policies should emphasize booster campaigns and hybrid immunity pathways to enhance population-level immunity and guide future COVID-19 management in Hong Kong.</p>","PeriodicalId":12326,"journal":{"name":"Expert Review of Vaccines","volume":" ","pages":"252-260"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14760584.2025.2485252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As the COVID-19 pandemic transitions into its fourth year, understanding the dynamics of immunity is critical for implementing effective public health measures. This study examines vaccine-induced, natural, and hybrid immunity to SARS-CoV-2 in Hong Kong, focusing on their protective effectiveness and waning characteristics against infection during the Omicron BA.1/2 dominant period.
Research design and methods: We conducted a territory-wide retrospective cohort study using vaccination and infection records from the Hong Kong Department of Health. The analysis included over 6.5 million adults, applying the Andersen-Gill model to estimate protective effectiveness while addressing selection bias through inverse probability weighting.
Results: Vaccine-induced immunity peaked one month after the first dose but waned rapidly, while boosters significantly prolonged protection. Infection-induced immunity showed higher initial effectiveness but declined faster than vaccine-induced immunity. Hybrid immunity provided the most durable protection. mRNA vaccines (Comirnaty) demonstrated greater effectiveness and slower waning compared to inactivated vaccines (CoronaVac).
Conclusions: Hybrid immunity represents the most effective strategy for sustained protection against SARS-CoV-2. Public health policies should emphasize booster campaigns and hybrid immunity pathways to enhance population-level immunity and guide future COVID-19 management in Hong Kong.
期刊介绍:
Expert Review of Vaccines (ISSN 1476-0584) provides expert commentary on the development, application, and clinical effectiveness of new vaccines. Coverage includes vaccine technology, vaccine adjuvants, prophylactic vaccines, therapeutic vaccines, AIDS vaccines and vaccines for defence against bioterrorism. All articles are subject to rigorous peer-review.
The vaccine field has been transformed by recent technological advances, but there remain many challenges in the delivery of cost-effective, safe vaccines. Expert Review of Vaccines facilitates decision making to drive forward this exciting field.