Deciphering the Pharmacological Potential of Kouqiangjie Formula for the Treatment of Diabetic Periodontitis Based on Network Pharmacology, Machine Learning, Molecular Dynamics, and Animal Experiments.

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL
Drug Design, Development and Therapy Pub Date : 2025-03-20 eCollection Date: 2025-01-01 DOI:10.2147/DDDT.S494066
Yeke Wu, Jiawei Li, Min Liu, Ranran Gao, Huijing Li, Yunfei Xie, Qiongying Hu, Jing Wei, Lixing Zhao, Li Li
{"title":"Deciphering the Pharmacological Potential of Kouqiangjie Formula for the Treatment of Diabetic Periodontitis Based on Network Pharmacology, Machine Learning, Molecular Dynamics, and Animal Experiments.","authors":"Yeke Wu, Jiawei Li, Min Liu, Ranran Gao, Huijing Li, Yunfei Xie, Qiongying Hu, Jing Wei, Lixing Zhao, Li Li","doi":"10.2147/DDDT.S494066","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontitis (PD) and type 2 diabetes mellitus (T2DM) represent interlinked global health burdens, commonly causing significant clinical complications when coincident. Therefore, managing both conditions (T2DM with periodontitis, DP) simultaneously poses considerable challenges, necessitating novel therapeutic strategies. KQJF has been clinically proven to treat DP with good efficacy, but its pharmacological substances and targets are not clear and urgently need to be clarified.</p><p><strong>Aim: </strong>To define the potential active components and targets of KQJF for the treatment of DP.</p><p><strong>Materials and methods: </strong>The investigation commenced with the application of UPLC-Q-TOF/MS analysis to delineate the active constituents of KQJF and their associated targets in addressing DP. Additionally, the research incorporated subsequent methodologies such as machine learning, network pharmacology, molecular docking, molecular dynamics simulations, and a DP rat model was established and validated by in vivo experiments using H&E staining, immunohistochemistry, quantitative real-time PCR, and Western blot.</p><p><strong>Results: </strong>KQJF was found to contain 49 prototype compounds and 121 metabolites with potential activity against PD and T2DM. Network pharmacology revealed 66 overlapping genes between the pharmacological targets of KQJF and known targets of PD and T2DM. Further exploration through PPI network and enrichment analyses illuminated the involvement of multi-target and multi-pathway mechanisms. Molecular docking and dynamics simulations confirmed the robust interactions between key compounds within KQJF and proteins associated with the diseases. In vivo validation demonstrated that KQJF treatment ameliorated DP-associated histopathological changes and modulated the expression of crucial proteins (including ABCG2, CCND1, CDKN1B, HIF1A, and PIK3R1) in a DP rat model.</p><p><strong>Conclusion: </strong>In summary, KQJF exhibits potential therapeutic benefits for DP through a multi-component and multi-target approach, potentially offering a novel integrative treatment strategy. This study underscores the importance of integrating traditional medicine with modern molecular techniques to explore novel therapeutic avenues for complex comorbid conditions, providing a blueprint for future pharmacological explorations.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"2103-2129"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S494066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Periodontitis (PD) and type 2 diabetes mellitus (T2DM) represent interlinked global health burdens, commonly causing significant clinical complications when coincident. Therefore, managing both conditions (T2DM with periodontitis, DP) simultaneously poses considerable challenges, necessitating novel therapeutic strategies. KQJF has been clinically proven to treat DP with good efficacy, but its pharmacological substances and targets are not clear and urgently need to be clarified.

Aim: To define the potential active components and targets of KQJF for the treatment of DP.

Materials and methods: The investigation commenced with the application of UPLC-Q-TOF/MS analysis to delineate the active constituents of KQJF and their associated targets in addressing DP. Additionally, the research incorporated subsequent methodologies such as machine learning, network pharmacology, molecular docking, molecular dynamics simulations, and a DP rat model was established and validated by in vivo experiments using H&E staining, immunohistochemistry, quantitative real-time PCR, and Western blot.

Results: KQJF was found to contain 49 prototype compounds and 121 metabolites with potential activity against PD and T2DM. Network pharmacology revealed 66 overlapping genes between the pharmacological targets of KQJF and known targets of PD and T2DM. Further exploration through PPI network and enrichment analyses illuminated the involvement of multi-target and multi-pathway mechanisms. Molecular docking and dynamics simulations confirmed the robust interactions between key compounds within KQJF and proteins associated with the diseases. In vivo validation demonstrated that KQJF treatment ameliorated DP-associated histopathological changes and modulated the expression of crucial proteins (including ABCG2, CCND1, CDKN1B, HIF1A, and PIK3R1) in a DP rat model.

Conclusion: In summary, KQJF exhibits potential therapeutic benefits for DP through a multi-component and multi-target approach, potentially offering a novel integrative treatment strategy. This study underscores the importance of integrating traditional medicine with modern molecular techniques to explore novel therapeutic avenues for complex comorbid conditions, providing a blueprint for future pharmacological explorations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信