Optimized mucus adhesion and penetration of lipid-polymer nanoparticles enables effective nose-to-brain delivery of perillyl alcohol for glioblastoma therapy.
Edilson Ribeiro de Oliveira Junior, Jonathan Matheus Silva, Mariana Arraes Salomão, Nathalia Correa de Almeida Oliveira, Carla Santos de Freitas, Natália Noronha Ferreira, Natalia Sanchez Moreno, Camila Fernanda Rodero, Daniel Graziani, Valtencir Zucolotto, Sebastião Antônio Mendanha, Eliana Martins Lima
{"title":"Optimized mucus adhesion and penetration of lipid-polymer nanoparticles enables effective nose-to-brain delivery of perillyl alcohol for glioblastoma therapy.","authors":"Edilson Ribeiro de Oliveira Junior, Jonathan Matheus Silva, Mariana Arraes Salomão, Nathalia Correa de Almeida Oliveira, Carla Santos de Freitas, Natália Noronha Ferreira, Natalia Sanchez Moreno, Camila Fernanda Rodero, Daniel Graziani, Valtencir Zucolotto, Sebastião Antônio Mendanha, Eliana Martins Lima","doi":"10.1007/s13346-025-01837-5","DOIUrl":null,"url":null,"abstract":"<p><p>The delivery of drugs directly from the nose to the brain has been explored for the treatment of neurological diseases, such as glioblastoma, by overcoming the blood-brain barrier. Nanocarriers have demonstrated outstanding ability to enhance drug bioavailability in the brain, following intranasal administration. However, the performance of these nanosystems may be hindered by inadequate interactions with the nasal mucosa, limiting their effectiveness in reaching the olfactory region, and consequently, the translocation of particles to the brain. Here, we designed hybrid lipid-polymer nanoparticles (LPNP), containing the cationic lipid DOTAP and the triblock copolymer Pluronic<sup>®</sup> F127 to combine the mucoadhesiveness and mucus-penetrating properties. Perillyl alcohol (POH), a molecule currently under clinical trials against glioblastoma, via intranasal route, was entrapped in the nanoparticles. LPNP-POH exhibited a balanced profile of mucus adhesion and penetration, suggesting that the formulation may enhance mucosal retention while maintaining effective mucus diffusivity. In vivo evaluations displayed higher translocation of LPNP-POH from the nasal cavity to the brain. LPNP-POH resulted in a 2.5-fold increase in the concentration of perillyl acid (a primary metabolite of POH) in the cerebral tissue compared to the free drug. In vitro assays demonstrated that LPNP-POH increased the cytotoxicity and reduced the tumor growth of U87MG glioma cells. These results highlighted that the engineered formulation, with optimized mucoadhesiveness and mucus penetration properties, improved nose-to-brain delivery of POH, offering a promising potential for glioblastoma therapy.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01837-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The delivery of drugs directly from the nose to the brain has been explored for the treatment of neurological diseases, such as glioblastoma, by overcoming the blood-brain barrier. Nanocarriers have demonstrated outstanding ability to enhance drug bioavailability in the brain, following intranasal administration. However, the performance of these nanosystems may be hindered by inadequate interactions with the nasal mucosa, limiting their effectiveness in reaching the olfactory region, and consequently, the translocation of particles to the brain. Here, we designed hybrid lipid-polymer nanoparticles (LPNP), containing the cationic lipid DOTAP and the triblock copolymer Pluronic® F127 to combine the mucoadhesiveness and mucus-penetrating properties. Perillyl alcohol (POH), a molecule currently under clinical trials against glioblastoma, via intranasal route, was entrapped in the nanoparticles. LPNP-POH exhibited a balanced profile of mucus adhesion and penetration, suggesting that the formulation may enhance mucosal retention while maintaining effective mucus diffusivity. In vivo evaluations displayed higher translocation of LPNP-POH from the nasal cavity to the brain. LPNP-POH resulted in a 2.5-fold increase in the concentration of perillyl acid (a primary metabolite of POH) in the cerebral tissue compared to the free drug. In vitro assays demonstrated that LPNP-POH increased the cytotoxicity and reduced the tumor growth of U87MG glioma cells. These results highlighted that the engineered formulation, with optimized mucoadhesiveness and mucus penetration properties, improved nose-to-brain delivery of POH, offering a promising potential for glioblastoma therapy.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.