MAMA-Mandibular Advancement Magnetic Appliance: A Digital Workflow and a CAD-CAM Development of a New Mandibular Advancement Device for the Treatment of Obstructive Sleep Apnea Syndrome.

IF 2.5 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
Riccardo Nucera, Enrico Nastro Siniscalchi, Giancarlo Consolo, Luigi Calabrese, Daniela Caccamo, Angela Mirea Bellocchio, Marco Portelli
{"title":"MAMA-Mandibular Advancement Magnetic Appliance: A Digital Workflow and a CAD-CAM Development of a New Mandibular Advancement Device for the Treatment of Obstructive Sleep Apnea Syndrome.","authors":"Riccardo Nucera, Enrico Nastro Siniscalchi, Giancarlo Consolo, Luigi Calabrese, Daniela Caccamo, Angela Mirea Bellocchio, Marco Portelli","doi":"10.3390/dj13030104","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). <b>Methods:</b> In this work, a new mandibular advancement device useful for mild-to-moderate OSAS patients is presented. It is developed through a CAD-CAM process and involves a passive propulsion of the mandible thanks to the attraction of rare-earth magnets positioned in the thickness of two thermally molded PET-G devices. The use of a PET-G device compared to traditional resin ones offers several clinical advantages related to the innovative characteristics of this polymer, which allows the fabrication of thinner devices, with high resistance to fluid corrosion, resulting in less bulk inside the oral cavity. <b>Results:</b> The innovative feature of the device proposed by the authors is that mandibular propulsion induced by the attraction of the magnetic jigs is not affected by a patient's mandibular posture during sleep. <b>Conclusions:</b> The original apparatus proposed by the authors determines a mesializing movement of the jaw through a different mechanism to traditional MADs and presents the great advantage of a digital and CAD-CAD workflow that can be developed directly by the clinicians in the practice.</p>","PeriodicalId":11269,"journal":{"name":"Dentistry Journal","volume":"13 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dentistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dj13030104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background/Objectives: Mandibular advancing devices (MADs) are removable intraoral apparatuses to use during sleep that modify the spatial position of the mandible, increasing airway patency and improving respiratory function at night in patients with obstructive sleep apnea syndrome (OSAS). Methods: In this work, a new mandibular advancement device useful for mild-to-moderate OSAS patients is presented. It is developed through a CAD-CAM process and involves a passive propulsion of the mandible thanks to the attraction of rare-earth magnets positioned in the thickness of two thermally molded PET-G devices. The use of a PET-G device compared to traditional resin ones offers several clinical advantages related to the innovative characteristics of this polymer, which allows the fabrication of thinner devices, with high resistance to fluid corrosion, resulting in less bulk inside the oral cavity. Results: The innovative feature of the device proposed by the authors is that mandibular propulsion induced by the attraction of the magnetic jigs is not affected by a patient's mandibular posture during sleep. Conclusions: The original apparatus proposed by the authors determines a mesializing movement of the jaw through a different mechanism to traditional MADs and presents the great advantage of a digital and CAD-CAD workflow that can be developed directly by the clinicians in the practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dentistry Journal
Dentistry Journal Dentistry-Dentistry (all)
CiteScore
3.70
自引率
7.70%
发文量
213
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信