Brian Rodemoyer, Ganesha Kariyawasam, Veena Subramanian, Kristina Schmidt
{"title":"Condensin II interacts with BLM helicase in S phase to maintain genome stability.","authors":"Brian Rodemoyer, Ganesha Kariyawasam, Veena Subramanian, Kristina Schmidt","doi":"10.1038/s42003-025-07916-0","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"492"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937517/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07916-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vertebrates possess two condensins, I and II, that are essential for chromosome condensation and segregation. Condensin II has also been implicated in maintaining genome integrity outside of mitosis, though the underlying mechanisms are unclear. Here, we found that condensin II interacts with a short linear motif in the disordered N-terminal tail of the Bloom syndrome helicase BLM, contributing to BLM association with nascent DNA and genome stability. Disrupting the BLM-condensin II interaction reduced replication speed, increased fork stalling and sister-chromatid exchanges, delayed repair of DNA double-strand breaks, and led to micronuclei. In S phase, interactions of SMC2 with other condensin II subunits and with BLM weakened temporarily, suggesting a conformational change followed by phosphorylation-induced disruption of BLM interactions with TOP2A and RPA. Our findings suggest a new way by which BLM contributes to genome integrity and implicates condensin II in interphase functions linked to genome stability.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.