Nica Gutu, Hitoshi Ishikuma, Carolin Ector, Ulrich Keilholz, Hanspeter Herzel, Adrián E Granada
{"title":"A combined mathematical and experimental approach reveals the drivers of time-of-day drug sensitivity in human cells.","authors":"Nica Gutu, Hitoshi Ishikuma, Carolin Ector, Ulrich Keilholz, Hanspeter Herzel, Adrián E Granada","doi":"10.1038/s42003-025-07931-1","DOIUrl":null,"url":null,"abstract":"<p><p>The circadian clock plays a pivotal role in regulating various aspects of cancer, influencing tumor growth and treatment responses. There are significant changes in drug efficacy and adverse effects when drugs are administered at different times of the day, underscoring the importance of considering the time of day in treatments. Despite these well-established findings, chronotherapy approaches in drug treatment have yet to fully integrate into clinical practice, largely due to the stringent clinical requirements for proving efficacy and safety, alongside the need for deeper mechanistic insights. In this study, we employ a combined mathematical and experimental approach to systematically investigate the factors influencing time-of-day drug sensitivity in human cells. Here we show how circadian and drug properties independently shape time-of-day profiles, providing valuable insights into the temporal dynamics of treatment responses. Understanding how drug efficacy fluctuates throughout the day holds immense potential for the development of personalized treatment strategies aligned with an individual's internal biological clock, revolutionizing cancer treatment by maximizing therapeutic benefits. Moreover, our framework offers a promising avenue for refining future drug screening efforts, paving the way for more effective and targeted therapies across diverse tissue types.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"491"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07931-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The circadian clock plays a pivotal role in regulating various aspects of cancer, influencing tumor growth and treatment responses. There are significant changes in drug efficacy and adverse effects when drugs are administered at different times of the day, underscoring the importance of considering the time of day in treatments. Despite these well-established findings, chronotherapy approaches in drug treatment have yet to fully integrate into clinical practice, largely due to the stringent clinical requirements for proving efficacy and safety, alongside the need for deeper mechanistic insights. In this study, we employ a combined mathematical and experimental approach to systematically investigate the factors influencing time-of-day drug sensitivity in human cells. Here we show how circadian and drug properties independently shape time-of-day profiles, providing valuable insights into the temporal dynamics of treatment responses. Understanding how drug efficacy fluctuates throughout the day holds immense potential for the development of personalized treatment strategies aligned with an individual's internal biological clock, revolutionizing cancer treatment by maximizing therapeutic benefits. Moreover, our framework offers a promising avenue for refining future drug screening efforts, paving the way for more effective and targeted therapies across diverse tissue types.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.