{"title":"Role of Galactosylceramide Metabolism in Satellite Glial Cell Dysfunction and Neuron-Glia Interactions in Painful Diabetic Peripheral Neuropathy.","authors":"Xin Xu, Yue Zhang, Shuo Li, Chenlong Liao, Xiaosheng Yang, Wenchuan Zhang","doi":"10.3390/cells14060393","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic peripheral neuropathy (DPN) is a prevalent and disabling complication of diabetes, with painful diabetic peripheral neuropathy (PDPN) being its most severe subtype due to chronic pain and resistance to treatment. Satellite glial cells (SGCs), critical for maintaining dorsal root ganglion (DRG) homeostasis, undergo significant structural and functional changes under pathological conditions. This study investigated the role of galactosylceramide (GalCer), a key sphingolipid, in SGC dysfunction and neuron-glia interactions during DPN progression. Using a rat model of PDPN, we employed single-cell RNA sequencing (scRNA-seq), targeted mass spectrometry, and immunofluorescence analysis. The PDPN group exhibited transcriptional activation and structural reorganization of SGCs, characterized by increased SGC abundance and glial activation, evidenced by elevated Gfap expression. Functional enrichment analyses revealed disruptions in sphingolipid metabolism, including marked reductions in GalCer levels. Subclustering identified vulnerable SGC subsets, such as Cluster a, with dysregulated lipid metabolism. The depletion of GalCer impaired SGC-neuron communication, destabilizing DRG homeostasis and amplifying neurodegeneration and neuropathic pain. These findings demonstrate that GalCer depletion is a central mediator of SGC dysfunction in PDPN, disrupting neuron-glia interactions and exacerbating neuropathic pain. This study provides novel insights into the molecular mechanisms of DPN progression and identifies GalCer metabolism as a potential therapeutic target.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060393","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent and disabling complication of diabetes, with painful diabetic peripheral neuropathy (PDPN) being its most severe subtype due to chronic pain and resistance to treatment. Satellite glial cells (SGCs), critical for maintaining dorsal root ganglion (DRG) homeostasis, undergo significant structural and functional changes under pathological conditions. This study investigated the role of galactosylceramide (GalCer), a key sphingolipid, in SGC dysfunction and neuron-glia interactions during DPN progression. Using a rat model of PDPN, we employed single-cell RNA sequencing (scRNA-seq), targeted mass spectrometry, and immunofluorescence analysis. The PDPN group exhibited transcriptional activation and structural reorganization of SGCs, characterized by increased SGC abundance and glial activation, evidenced by elevated Gfap expression. Functional enrichment analyses revealed disruptions in sphingolipid metabolism, including marked reductions in GalCer levels. Subclustering identified vulnerable SGC subsets, such as Cluster a, with dysregulated lipid metabolism. The depletion of GalCer impaired SGC-neuron communication, destabilizing DRG homeostasis and amplifying neurodegeneration and neuropathic pain. These findings demonstrate that GalCer depletion is a central mediator of SGC dysfunction in PDPN, disrupting neuron-glia interactions and exacerbating neuropathic pain. This study provides novel insights into the molecular mechanisms of DPN progression and identifies GalCer metabolism as a potential therapeutic target.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.