Giang Le Minh, Jessica Merzy, Emily M Esquea, Nusaiba N Ahmed, Riley G Young, Ryan J Sharp, Tejsi T Dhameliya, Bernice Agana, Mi-Hye Lee, Jennifer R Bethard, Susana Comte-Walters, Lauren E Ball, Mauricio J Reginato
{"title":"GATAD2B O-GlcNAcylation Regulates Breast Cancer Stem-like Potential and Drug Resistance.","authors":"Giang Le Minh, Jessica Merzy, Emily M Esquea, Nusaiba N Ahmed, Riley G Young, Ryan J Sharp, Tejsi T Dhameliya, Bernice Agana, Mi-Hye Lee, Jennifer R Bethard, Susana Comte-Walters, Lauren E Ball, Mauricio J Reginato","doi":"10.3390/cells14060398","DOIUrl":null,"url":null,"abstract":"<p><p>The growth of breast tumors is driven and controlled by a subpopulation of cancer cells resembling adult stem cells, which are called cancer stem-like cells (CSCs). In breast cancer, the function and maintenance of CSCs are influenced by protein O-GlcNAcylation and the enzyme responsible for this post-translational modification, O-GlcNAc transferase (OGT). However, the mechanism of CSCs regulation by OGT and O-GlcNAc cycling in breast cancer is still unclear. Analysis of the proteome and O-GlcNAcome, revealed GATAD2B, a component of the Nucleosome Remodeling and Deacetylase (NuRD) complex, as a substrate regulated by OGT. Reducing GATAD2B genetically impairs mammosphere formation, decreases expression of self-renewal factors and CSCs population. O-GlcNAcylation of GATAD2B at the C-terminus protects GATAD2B from ubiquitination and proteasomal degradation in breast cancer cells. We identify ITCH as a novel E3 ligase for GATAD2B and show that targeting ITCH genetically increases GATAD2B levels and increases CSCs phenotypes. Lastly, we show that overexpression of wild-type GATAD2B, but not the mutant lacking C-terminal O-GlcNAc sites, promotes mammosphere formation, expression of CSCs factors and drug resistance. Together, we identify a key role of GATAD2B and ITCH in regulating CSCs in breast cancer and GATAD2B O-GlcNAcylation as a mechanism regulating breast cancer stem-like populations and promoting chemoresistance.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of breast tumors is driven and controlled by a subpopulation of cancer cells resembling adult stem cells, which are called cancer stem-like cells (CSCs). In breast cancer, the function and maintenance of CSCs are influenced by protein O-GlcNAcylation and the enzyme responsible for this post-translational modification, O-GlcNAc transferase (OGT). However, the mechanism of CSCs regulation by OGT and O-GlcNAc cycling in breast cancer is still unclear. Analysis of the proteome and O-GlcNAcome, revealed GATAD2B, a component of the Nucleosome Remodeling and Deacetylase (NuRD) complex, as a substrate regulated by OGT. Reducing GATAD2B genetically impairs mammosphere formation, decreases expression of self-renewal factors and CSCs population. O-GlcNAcylation of GATAD2B at the C-terminus protects GATAD2B from ubiquitination and proteasomal degradation in breast cancer cells. We identify ITCH as a novel E3 ligase for GATAD2B and show that targeting ITCH genetically increases GATAD2B levels and increases CSCs phenotypes. Lastly, we show that overexpression of wild-type GATAD2B, but not the mutant lacking C-terminal O-GlcNAc sites, promotes mammosphere formation, expression of CSCs factors and drug resistance. Together, we identify a key role of GATAD2B and ITCH in regulating CSCs in breast cancer and GATAD2B O-GlcNAcylation as a mechanism regulating breast cancer stem-like populations and promoting chemoresistance.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.