Effects of Space Flight on Inflammasome Activation in the Brain of Mice.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-03-12 DOI:10.3390/cells14060417
Upal Roy, Roey Hadad, Angel A Rodriguez, Alen Saju, Deepa Roy, Mario Gil, Robert W Keane, Ryan T Scott, Xiao W Mao, Juan Pablo de Rivero Vaccari
{"title":"Effects of Space Flight on Inflammasome Activation in the Brain of Mice.","authors":"Upal Roy, Roey Hadad, Angel A Rodriguez, Alen Saju, Deepa Roy, Mario Gil, Robert W Keane, Ryan T Scott, Xiao W Mao, Juan Pablo de Rivero Vaccari","doi":"10.3390/cells14060417","DOIUrl":null,"url":null,"abstract":"<p><p>Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060417","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Space flight exposes astronauts to stressors that alter the immune response, rendering them vulnerable to infections and diseases. In this study, we aimed to determine the levels of inflammasome activation in the brains of mice that were housed in the International Space Station (ISS) for 37 days. C57BL/6 mice were launched to the ISS as part of NASA's Rodent Research 1 Mission on SpaceX-4 CRS-4 Dragon cargo spacecraft from 21 September 2014 to 25 October 2014. Dissected mouse brains from that mission were analyzed by immunoblotting of inflammasome signaling proteins and Electrochemiluminescence Immunoassay (ECLIA) for inflammatory cytokine levels. Our data indicate decreased inflammasome activation in the brains of mice that were housed in the ISS for 37 days when compared to the brains of mice that were maintained on the ground, and in mice corresponding to the baseline group that were sacrificed at the time of launching of SpaceX-4. Moreover, we did not detect any significant changes in the expression levels of the pro-inflammatory cytokines TNF-α, IL-2, IFN-γ, IL-5, IL-6, IL-12p70 and IL-10 between the ground control and the flight groups. Together, these studies suggest that spaceflight results in a decrease in the levels of innate immune signaling molecules that govern inflammasome signaling in the brain of mice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信