{"title":"Development of Novel Peptides That Target the Ninjurin 1 and 2 Pathways to Inhibit Cell Growth and Survival via p53.","authors":"Jin Zhang, Xiangmudong Kong, Xinbin Chen","doi":"10.3390/cells14060401","DOIUrl":null,"url":null,"abstract":"<p><p>Ninjurin 1 and 2 (NINJ1, NINJ2) belong to the homophilic cell adhesion family and play significant roles in cellular communication and tissue development. While both NINJ1 and NINJ2 are found to be over-expressed in several types of cancers, it remains unclear whether they can be targeted for cancer treatment. In this study, we aimed to develop NINJ1/2 peptides derived from the N-terminal extracellular domain that can elicit growth suppression and thus possess therapeutic potentials. We found that peptide NINJ1-A, which is derived from the N-terminal adhesion motif of NINJ1, was able to inhibit cell growth in a NINJ1- or p53-dependent manner. Similarly, peptide NINJ2-A, which is derived from the N-terminal adhesion motif of NINJ2, was able to inhibit cell growth in a NINJ2- or p53-dependent manner. We also found that NINJ1 and NINJ2 physically interact via their respective N-terminal domains. Interestingly, NINJ1-B and NINJ2-B peptides, which were derived from the N-terminal amphipathic helix domains of NINJ1 and NINJ2, respectively, were able to disrupt NINJ1-NINJ2 interaction and inhibit cell growth in a NINJ1/NINJ2-dependent manner. Notably, NINJ1-B and NINJ2-B peptides demonstrated greater potency in growth suppression than NINJ1-A and NINJ2-A peptides, respectively. Mechanistically, we found that NINJ1-B and NINJ2-B peptides were able to induce p53 expression and suppress cell growth in a p53-dependent manner. Together, our findings provide valuable insights into the development of NINJ1/NINJ2 peptides as potential cancer therapeutics, particularly for cancers harboring wild-type p53.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ninjurin 1 and 2 (NINJ1, NINJ2) belong to the homophilic cell adhesion family and play significant roles in cellular communication and tissue development. While both NINJ1 and NINJ2 are found to be over-expressed in several types of cancers, it remains unclear whether they can be targeted for cancer treatment. In this study, we aimed to develop NINJ1/2 peptides derived from the N-terminal extracellular domain that can elicit growth suppression and thus possess therapeutic potentials. We found that peptide NINJ1-A, which is derived from the N-terminal adhesion motif of NINJ1, was able to inhibit cell growth in a NINJ1- or p53-dependent manner. Similarly, peptide NINJ2-A, which is derived from the N-terminal adhesion motif of NINJ2, was able to inhibit cell growth in a NINJ2- or p53-dependent manner. We also found that NINJ1 and NINJ2 physically interact via their respective N-terminal domains. Interestingly, NINJ1-B and NINJ2-B peptides, which were derived from the N-terminal amphipathic helix domains of NINJ1 and NINJ2, respectively, were able to disrupt NINJ1-NINJ2 interaction and inhibit cell growth in a NINJ1/NINJ2-dependent manner. Notably, NINJ1-B and NINJ2-B peptides demonstrated greater potency in growth suppression than NINJ1-A and NINJ2-A peptides, respectively. Mechanistically, we found that NINJ1-B and NINJ2-B peptides were able to induce p53 expression and suppress cell growth in a p53-dependent manner. Together, our findings provide valuable insights into the development of NINJ1/NINJ2 peptides as potential cancer therapeutics, particularly for cancers harboring wild-type p53.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.