Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-03-13 DOI:10.3390/cells14060432
Mohamed Mekhemar, Immo Terheyden, Christof Dörfer, Karim Fawzy El-Sayed
{"title":"Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy.","authors":"Mohamed Mekhemar, Immo Terheyden, Christof Dörfer, Karim Fawzy El-Sayed","doi":"10.3390/cells14060432","DOIUrl":null,"url":null,"abstract":"<p><p>Toll-like receptors (TLRs) play a crucial role in the innate immune response, mediating cellular interactions with the microenvironment and influencing periodontal disease progression. This in vitro study aimed to comprehensively characterize the TLR expression profile of periodontal ligament mesenchymal stem/progenitor cells (PDLSCs) and investigate its modulation by inflammatory stimuli associated with periodontal disease. PDLSCs (<i>n</i> = 6) were isolated, selected using anti-STRO-1 antibodies, and cultured to evaluate their colony-forming abilities and stem/progenitor characteristics. Baseline and inflammation-induced TLR expressions were evaluated using RT-PCR and protein analyses following cytokine-mediated stimulation. PDLSCs exhibited the expected stem cell characteristics and expressed multiple TLRs under both conditions. Notably, inflammatory stimulation significantly upregulated TLR1 and TLR2 while downregulating TLR10 (<i>p</i> < 0.05). These findings provide a comprehensive characterization of TLR expression in PDLSCs and demonstrate how inflammation modulates their innate immune profile. The observed shifts in TLR expression may influence PDLSC responses to microbial pathogens and impact their immunomodulatory and regenerative properties in periodontal tissues. Understanding these interactions could contribute to developing targeted strategies for improving PDLSC-based therapies in periodontal disease.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060432","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Toll-like receptors (TLRs) play a crucial role in the innate immune response, mediating cellular interactions with the microenvironment and influencing periodontal disease progression. This in vitro study aimed to comprehensively characterize the TLR expression profile of periodontal ligament mesenchymal stem/progenitor cells (PDLSCs) and investigate its modulation by inflammatory stimuli associated with periodontal disease. PDLSCs (n = 6) were isolated, selected using anti-STRO-1 antibodies, and cultured to evaluate their colony-forming abilities and stem/progenitor characteristics. Baseline and inflammation-induced TLR expressions were evaluated using RT-PCR and protein analyses following cytokine-mediated stimulation. PDLSCs exhibited the expected stem cell characteristics and expressed multiple TLRs under both conditions. Notably, inflammatory stimulation significantly upregulated TLR1 and TLR2 while downregulating TLR10 (p < 0.05). These findings provide a comprehensive characterization of TLR expression in PDLSCs and demonstrate how inflammation modulates their innate immune profile. The observed shifts in TLR expression may influence PDLSC responses to microbial pathogens and impact their immunomodulatory and regenerative properties in periodontal tissues. Understanding these interactions could contribute to developing targeted strategies for improving PDLSC-based therapies in periodontal disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信