Agnieszka Nowacka, Maciej Śniegocki, Wojciech Smuczyński, Dominika Bożiłow, Ewa Ziółkowska
{"title":"Angiogenesis in Glioblastoma-Treatment Approaches.","authors":"Agnieszka Nowacka, Maciej Śniegocki, Wojciech Smuczyński, Dominika Bożiłow, Ewa Ziółkowska","doi":"10.3390/cells14060407","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma, the most common primary malignant brain tumor in adults, carries a poor prognosis, with a median survival of just 15 months, significantly impacting patients' quality of life. The aggressive growth of these highly vascularized tumors relies heavily on angiogenesis, driven primarily by vascular endothelial growth factor-A. Therefore, VEGF signaling pathway has become a prime therapeutic target in GBM treatment over the past decade. While anti-angiogenic treatment showed promise, agents like bevacizumab have ultimately failed to improve overall survival. This highlights the presence of compensatory angiogenic mechanisms that bypass VEGF inhibition, necessitating further investigation into resistance mechanisms and the development of more effective therapeutic strategies. This review examined the current landscape of anti-angiogenic agents for GBM, analyzed the mechanisms driving resistance to these therapies, and explored potential strategies for enhancing their effectiveness.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060407","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma, the most common primary malignant brain tumor in adults, carries a poor prognosis, with a median survival of just 15 months, significantly impacting patients' quality of life. The aggressive growth of these highly vascularized tumors relies heavily on angiogenesis, driven primarily by vascular endothelial growth factor-A. Therefore, VEGF signaling pathway has become a prime therapeutic target in GBM treatment over the past decade. While anti-angiogenic treatment showed promise, agents like bevacizumab have ultimately failed to improve overall survival. This highlights the presence of compensatory angiogenic mechanisms that bypass VEGF inhibition, necessitating further investigation into resistance mechanisms and the development of more effective therapeutic strategies. This review examined the current landscape of anti-angiogenic agents for GBM, analyzed the mechanisms driving resistance to these therapies, and explored potential strategies for enhancing their effectiveness.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.