Ameliorative Effect of Itaconic Acid/IRG1 Against Endoplasmic Reticulum Stress-Induced Necroptosis in Granulosa Cells via PERK-ATF4-AChE Pathway in Bovine.

IF 5.1 2区 生物学 Q2 CELL BIOLOGY
Cells Pub Date : 2025-03-12 DOI:10.3390/cells14060419
Xiaorui Yang, Yue Chen, Xinzi Wang, Gaoqing Xu, Hongjie Wang, Xinqi Shu, He Ding, Xin Ma, Jing Guo, Jun Wang, Jing Zhao, Yi Fang, Hongyu Liu, Wenfa Lu
{"title":"Ameliorative Effect of Itaconic Acid/IRG1 Against Endoplasmic Reticulum Stress-Induced Necroptosis in Granulosa Cells via PERK-ATF4-AChE Pathway in Bovine.","authors":"Xiaorui Yang, Yue Chen, Xinzi Wang, Gaoqing Xu, Hongjie Wang, Xinqi Shu, He Ding, Xin Ma, Jing Guo, Jun Wang, Jing Zhao, Yi Fang, Hongyu Liu, Wenfa Lu","doi":"10.3390/cells14060419","DOIUrl":null,"url":null,"abstract":"<p><p>The necroptosis of granulosa cells has been proven to be one of the important triggers of follicular atresia, which is an important cause of reduced reproductive capacity in cows. The rapid growth of granulosa cells is accompanied by endoplasmic reticulum stress (ERS), leading to granulosa cell death. However, the link between ERS and necroptosis, as well as its mechanism in bovine granulosa cells is still unclear. Itaconic acid is an endogenous anti-inflammatory and antioxidant small-molecule compound that can alleviate ERS. Therefore, the aim of the current study is to evaluate the effect of ERS on necroptosis and investigate the ameliorative effect of itaconic acid against ERS-induced necroptosis in granulosa cells. Bovine granulosa cells were treated with tunicamycin (Tm) to induce ERS. After the addition of the necroptosis inhibitor Nec-1 and the detection of the necroptosis inducer acetylcholinesterase (AChE), flow cytometry, transmission electron microscopy, and mass spectrometry were used to analyze the expression of itaconic acid and IRG1 in the granulosa cells. In addition, the role of the PERK pathway downstream of ERS in ERS-induced necroptosis was also investigated. We report here that ERS can induce necroptosis in granulosa cells. Itaconic acid supplementation significantly attenuates the effect of ERS-induced damage. In summary, this research provides a scientific basis and a drug reference for treating follicular atresia and improving bovine reproductive capacity.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060419","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The necroptosis of granulosa cells has been proven to be one of the important triggers of follicular atresia, which is an important cause of reduced reproductive capacity in cows. The rapid growth of granulosa cells is accompanied by endoplasmic reticulum stress (ERS), leading to granulosa cell death. However, the link between ERS and necroptosis, as well as its mechanism in bovine granulosa cells is still unclear. Itaconic acid is an endogenous anti-inflammatory and antioxidant small-molecule compound that can alleviate ERS. Therefore, the aim of the current study is to evaluate the effect of ERS on necroptosis and investigate the ameliorative effect of itaconic acid against ERS-induced necroptosis in granulosa cells. Bovine granulosa cells were treated with tunicamycin (Tm) to induce ERS. After the addition of the necroptosis inhibitor Nec-1 and the detection of the necroptosis inducer acetylcholinesterase (AChE), flow cytometry, transmission electron microscopy, and mass spectrometry were used to analyze the expression of itaconic acid and IRG1 in the granulosa cells. In addition, the role of the PERK pathway downstream of ERS in ERS-induced necroptosis was also investigated. We report here that ERS can induce necroptosis in granulosa cells. Itaconic acid supplementation significantly attenuates the effect of ERS-induced damage. In summary, this research provides a scientific basis and a drug reference for treating follicular atresia and improving bovine reproductive capacity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cells
Cells Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍: Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信