Silvano Bond, Smita Saxena, Julieth A Sierra-Delgado
{"title":"Microglia in ALS: Insights into Mechanisms and Therapeutic Potential.","authors":"Silvano Bond, Smita Saxena, Julieth A Sierra-Delgado","doi":"10.3390/cells14060421","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons, leading to escalating muscle weakness, atrophy, and eventually paralysis. While neurons are the most visibly affected, emerging data highlight microglia-the brain's resident immune cells-as key contributors to disease onset and progression. Rather than existing in a simple beneficial or harmful duality, microglia can adopt multiple functional states shaped by internal and external factors, including those in ALS. Collectively, these disease-specific forms are called disease-associated microglia (DAM). Research using rodent models, patient-derived cells, and human postmortem tissue shows that microglia can transition into DAM phenotypes, driving inflammation and neuronal injury. However, these cells can also fulfill protective roles under certain conditions, revealing their adaptable nature. This review explores recent discoveries regarding the multifaceted behavior of microglia in ALS, highlights important findings that link these immune cells to motor neuron deterioration, and discusses emerging therapies-some already used in clinical trials-that aim to recalibrate microglial functions and potentially slow disease progression.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 6","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14060421","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons, leading to escalating muscle weakness, atrophy, and eventually paralysis. While neurons are the most visibly affected, emerging data highlight microglia-the brain's resident immune cells-as key contributors to disease onset and progression. Rather than existing in a simple beneficial or harmful duality, microglia can adopt multiple functional states shaped by internal and external factors, including those in ALS. Collectively, these disease-specific forms are called disease-associated microglia (DAM). Research using rodent models, patient-derived cells, and human postmortem tissue shows that microglia can transition into DAM phenotypes, driving inflammation and neuronal injury. However, these cells can also fulfill protective roles under certain conditions, revealing their adaptable nature. This review explores recent discoveries regarding the multifaceted behavior of microglia in ALS, highlights important findings that link these immune cells to motor neuron deterioration, and discusses emerging therapies-some already used in clinical trials-that aim to recalibrate microglial functions and potentially slow disease progression.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.