A Computational Study on the Hydrodynamics of Bio-Inspired Quadrupedal Paddling.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yihan Wang, Yumeng Cai, Bin Xie, Chi Zhu, Yunquan Li, Ye Chen
{"title":"A Computational Study on the Hydrodynamics of Bio-Inspired Quadrupedal Paddling.","authors":"Yihan Wang, Yumeng Cai, Bin Xie, Chi Zhu, Yunquan Li, Ye Chen","doi":"10.3390/biomimetics10030148","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its exceptional terrain mobility, quadrupedal locomotion has been used in the design of many amphibious robots for broad applications including resource exploration, disaster rescue, and reconnaissance. In this work, swimming of a quadrupedal paddling model is considered, and the effects of the legs' initial swing angle, swing amplitude, and power phase duration are numerically investigated through three paddling gaits, namely, the trotting gait, the diagonal, and the lateral sequence gaits. Three different modes for drag-based thrust generation, the \"Trotting Mode\", the \"Hindering Mode\", and the \"Separate Mode\", are identified. In the \"Trotting Mode\", each pair of diagonal legs contributes equally and alternately to the thrust within the paddling cycle, and its contribution is impaired by the other pair of diagonal legs. In the \"Hindering Mode\", the thrust contribution of an individual leg is significantly undermined by the drag resulting from the preceding leg leaving its current power phase and entering the following recovery phase. In the \"Separate Mode\", the four legs independently contribute to the total thrust by forming a compact four-peak waveform equally distributed within one paddling cycle. At a given swing amplitude, the leg configuration at peak thrust moment is identical, regardless of initial swing angle and power phase ratio. Meanwhile, a forward-tilted leg configuration with flatter upper- and lower-limb alignment at peak thrust moment consistently indicates a lower thrust generation. Hydrodynamic moments in the diagonal and lateral sequence gaits are much larger than those in the trotting gait. In addition, enhanced thrust is typically accompanied by larger hydrodynamic moments and a higher energy expenditure.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940226/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its exceptional terrain mobility, quadrupedal locomotion has been used in the design of many amphibious robots for broad applications including resource exploration, disaster rescue, and reconnaissance. In this work, swimming of a quadrupedal paddling model is considered, and the effects of the legs' initial swing angle, swing amplitude, and power phase duration are numerically investigated through three paddling gaits, namely, the trotting gait, the diagonal, and the lateral sequence gaits. Three different modes for drag-based thrust generation, the "Trotting Mode", the "Hindering Mode", and the "Separate Mode", are identified. In the "Trotting Mode", each pair of diagonal legs contributes equally and alternately to the thrust within the paddling cycle, and its contribution is impaired by the other pair of diagonal legs. In the "Hindering Mode", the thrust contribution of an individual leg is significantly undermined by the drag resulting from the preceding leg leaving its current power phase and entering the following recovery phase. In the "Separate Mode", the four legs independently contribute to the total thrust by forming a compact four-peak waveform equally distributed within one paddling cycle. At a given swing amplitude, the leg configuration at peak thrust moment is identical, regardless of initial swing angle and power phase ratio. Meanwhile, a forward-tilted leg configuration with flatter upper- and lower-limb alignment at peak thrust moment consistently indicates a lower thrust generation. Hydrodynamic moments in the diagonal and lateral sequence gaits are much larger than those in the trotting gait. In addition, enhanced thrust is typically accompanied by larger hydrodynamic moments and a higher energy expenditure.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信