Design and Optimization of an Anthropomorphic Robot Finger.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Ming Cheng, Li Jiang, Ziqi Liu
{"title":"Design and Optimization of an Anthropomorphic Robot Finger.","authors":"Ming Cheng, Li Jiang, Ziqi Liu","doi":"10.3390/biomimetics10030170","DOIUrl":null,"url":null,"abstract":"<p><p>The coupled-adaptive underactuated finger offers two motion modes: pre-grasping and self-adaptive grasping. It can execute anthropomorphic pre-grasp motions before the proximal phalanx contacts an object and transitions to adaptive enveloping once contact occurs. The key to designing a coupled-adaptive finger lies in its configuration and parameter, which are crucial for achieving a more human-like design for the prosthetic hand. Thus, this paper proposes a configuration topology and parameter optimization design method for a three-joint coupled-adaptive underactuated finger. The finger mechanism utilizes a combination of prismatic pairs and a compression spring to facilitate the transition between coupled motion and adaptive motion. This enables the underactuated finger to perform coupled movements in free space and adaptive grasping motions once it makes contact with an object. Furthermore, this paper introduces a finger linkage parameter optimization method that takes the joint motion angles and overall dimensions as constraints, aiming to linearize the joint coupling motion ratios as the primary optimization objective. The design method proposed in this paper not only presents a novel linkage mechanism but also outlines and compares its isomorphic types. Furthermore, the optimization results provide an accurate maximum motion value for the finger.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030170","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The coupled-adaptive underactuated finger offers two motion modes: pre-grasping and self-adaptive grasping. It can execute anthropomorphic pre-grasp motions before the proximal phalanx contacts an object and transitions to adaptive enveloping once contact occurs. The key to designing a coupled-adaptive finger lies in its configuration and parameter, which are crucial for achieving a more human-like design for the prosthetic hand. Thus, this paper proposes a configuration topology and parameter optimization design method for a three-joint coupled-adaptive underactuated finger. The finger mechanism utilizes a combination of prismatic pairs and a compression spring to facilitate the transition between coupled motion and adaptive motion. This enables the underactuated finger to perform coupled movements in free space and adaptive grasping motions once it makes contact with an object. Furthermore, this paper introduces a finger linkage parameter optimization method that takes the joint motion angles and overall dimensions as constraints, aiming to linearize the joint coupling motion ratios as the primary optimization objective. The design method proposed in this paper not only presents a novel linkage mechanism but also outlines and compares its isomorphic types. Furthermore, the optimization results provide an accurate maximum motion value for the finger.

耦合自适应欠动手指提供两种运动模式:预抓和自适应抓。在近节指骨接触物体之前,它可以执行拟人化的预抓取运动,一旦接触物体,就会过渡到自适应包络运动。设计耦合自适应手指的关键在于其配置和参数,这对于实现更像人类的假手设计至关重要。因此,本文提出了一种三关节耦合自适应下压手指的配置拓扑和参数优化设计方法。该手指机构利用棱柱对和压缩弹簧的组合来促进耦合运动和自适应运动之间的过渡。这使得欠驱动手指能够在自由空间中执行耦合运动,并在与物体接触后执行自适应抓取运动。此外,本文还介绍了一种以关节运动角度和整体尺寸为约束条件的手指联动参数优化方法,旨在将关节耦合运动比线性化作为首要优化目标。本文提出的设计方法不仅展示了一种新颖的联动机构,还概述并比较了其同构类型。此外,优化结果还提供了手指的精确最大运动值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信