Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Dorien I Schonebaum, Noelle Garbaccio, Maria J Escobar-Domingo, Sasha Wood, Jade E Smith, Lacey Foster, Morvarid Mehdizadeh, Justin J Cordero, Jose A Foppiani, Umar Choudry, David L Kaplan, Samuel J Lin
{"title":"Comparing Biomechanical Properties of Bioabsorbable Suture Anchors: A Comprehensive Review.","authors":"Dorien I Schonebaum, Noelle Garbaccio, Maria J Escobar-Domingo, Sasha Wood, Jade E Smith, Lacey Foster, Morvarid Mehdizadeh, Justin J Cordero, Jose A Foppiani, Umar Choudry, David L Kaplan, Samuel J Lin","doi":"10.3390/biomimetics10030175","DOIUrl":null,"url":null,"abstract":"<p><p>Suture anchors (SAs) are medical devices used to connect soft tissue to bone. Traditionally these were made of metal; however, in the past few decades, bio-absorbable suture anchors have been created to overcome revision surgeries and other complications caused by metallic SAs. This systematic review aims to analyze the biomechanical properties of these SAs to gain a better understanding of their safety and utilization. A comprehensive systematic review that adhered to the PRISMA guidelines was conducted. Primary outcomes were that the pull-out strength of SAs, the rate of degradation secondarily, and the biocompatibility of all SAs were analyzed. After screening 347 articles, 16 were included in this review. These studies revealed that the pull-out strength of bio-absorbable SAs was not inferior to that of their non-absorbable comparatives. The studies also revealed that the rate of degradation varies widely from 7 to 90 months. It also showed that not all absorbable SAs were fully absorbed within the expected timeframe. This systematic review demonstrates that existing suture anchor materials exhibit comparable pull-out strengths, material-specific degradation rates, and variable biocompatibility. All-suture anchors had promising results in biocompatibility, but evidence fails to identify a single most favorable material. Higher-powered studies that incorporate tissue-specific characteristics, such as rotator cuff tear size, are warranted. To meet demonstrated shortcomings in strength and biocompatibility, we propose silk fibroin as a novel material for suture anchor design for its customizable properties and superior strength.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Suture anchors (SAs) are medical devices used to connect soft tissue to bone. Traditionally these were made of metal; however, in the past few decades, bio-absorbable suture anchors have been created to overcome revision surgeries and other complications caused by metallic SAs. This systematic review aims to analyze the biomechanical properties of these SAs to gain a better understanding of their safety and utilization. A comprehensive systematic review that adhered to the PRISMA guidelines was conducted. Primary outcomes were that the pull-out strength of SAs, the rate of degradation secondarily, and the biocompatibility of all SAs were analyzed. After screening 347 articles, 16 were included in this review. These studies revealed that the pull-out strength of bio-absorbable SAs was not inferior to that of their non-absorbable comparatives. The studies also revealed that the rate of degradation varies widely from 7 to 90 months. It also showed that not all absorbable SAs were fully absorbed within the expected timeframe. This systematic review demonstrates that existing suture anchor materials exhibit comparable pull-out strengths, material-specific degradation rates, and variable biocompatibility. All-suture anchors had promising results in biocompatibility, but evidence fails to identify a single most favorable material. Higher-powered studies that incorporate tissue-specific characteristics, such as rotator cuff tear size, are warranted. To meet demonstrated shortcomings in strength and biocompatibility, we propose silk fibroin as a novel material for suture anchor design for its customizable properties and superior strength.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信