Hybrid Swarm Intelligence and Human-Inspired Optimization for Urban Drone Path Planning.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yidao Ji, Qiqi Liu, Cheng Zhou, Zhiji Han, Wei Wu
{"title":"Hybrid Swarm Intelligence and Human-Inspired Optimization for Urban Drone Path Planning.","authors":"Yidao Ji, Qiqi Liu, Cheng Zhou, Zhiji Han, Wei Wu","doi":"10.3390/biomimetics10030180","DOIUrl":null,"url":null,"abstract":"<p><p>Urban drone applications require efficient path planning to ensure safe and optimal navigation through complex environments. Drawing inspiration from the collective intelligence of animal groups and electoral processes in human societies, this study integrates hierarchical structures and group interaction behaviors into the standard Particle Swarm Optimization algorithm. Specifically, competitive and supportive behaviors are mathematically modeled to enhance particle learning strategies and improve global search capabilities in the mid-optimization phase. To mitigate the risk of convergence to local optima in later stages, a mutation mechanism is introduced to enhance population diversity and overall accuracy. To address the challenges of urban drone path planning, this paper proposes an innovative method that combines a path segmentation and prioritized update algorithm with a cubic B-spline curve algorithm. This method enhances both path optimality and smoothness, ensuring safe and efficient navigation in complex urban settings. Comparative simulations demonstrate the effectiveness of the proposed approach, yielding smoother trajectories and improved real-time performance. Additionally, the method significantly reduces energy consumption and operation time. Overall, this research advances drone path planning technology and broadens its applicability in diverse urban environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030180","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban drone applications require efficient path planning to ensure safe and optimal navigation through complex environments. Drawing inspiration from the collective intelligence of animal groups and electoral processes in human societies, this study integrates hierarchical structures and group interaction behaviors into the standard Particle Swarm Optimization algorithm. Specifically, competitive and supportive behaviors are mathematically modeled to enhance particle learning strategies and improve global search capabilities in the mid-optimization phase. To mitigate the risk of convergence to local optima in later stages, a mutation mechanism is introduced to enhance population diversity and overall accuracy. To address the challenges of urban drone path planning, this paper proposes an innovative method that combines a path segmentation and prioritized update algorithm with a cubic B-spline curve algorithm. This method enhances both path optimality and smoothness, ensuring safe and efficient navigation in complex urban settings. Comparative simulations demonstrate the effectiveness of the proposed approach, yielding smoother trajectories and improved real-time performance. Additionally, the method significantly reduces energy consumption and operation time. Overall, this research advances drone path planning technology and broadens its applicability in diverse urban environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信