{"title":"EDECO: An Enhanced Educational Competition Optimizer for Numerical Optimization Problems.","authors":"Wenkai Tang, Shangqing Shi, Zengtong Lu, Mengying Lin, Hao Cheng","doi":"10.3390/biomimetics10030176","DOIUrl":null,"url":null,"abstract":"<p><p>The Educational Competition Optimizer (ECO) is a newly proposed human-based metaheuristic algorithm. It derives from the phenomenon of educational competition in society with good performance. However, the basic ECO is constrained by its limited exploitation and exploration abilities when tackling complex optimization problems and exhibits the drawbacks of premature convergence and diminished population diversity. To this end, this paper proposes an enhanced educational competition optimizer, named EDECO, by incorporating estimation of distribution algorithm and replacing some of the best individual(s) using a dynamic fitness distance balancing strategy. On the one hand, the estimation of distribution algorithm enhances the global exploration ability and improves the population quality by establishing a probabilistic model based on the dominant individuals provided by EDECO, which solves the problem that the algorithm is unable to search the neighborhood of the optimal solution. On the other hand, the dynamic fitness distance balancing strategy increases the convergence speed of the algorithm and balances the exploitation and exploration through an adaptive mechanism. Finally, this paper conducts experiments on the proposed EDECO algorithm with 29 CEC 2017 benchmark functions and compares EDECO with four basic algorithms as well as four advanced improved algorithms. The results show that EDECO indeed achieves significant improvements compared to the basic ECO and other compared algorithms, and performs noticeably better than its competitors. Next, this study applies EDECO to 10 engineering constrained optimization problems, and the experimental results show the significant superiority of EDECO in solving real engineering optimization problems. These findings further support the effectiveness and usefulness of our proposed algorithm in solving complex engineering optimization challenges.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030176","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Educational Competition Optimizer (ECO) is a newly proposed human-based metaheuristic algorithm. It derives from the phenomenon of educational competition in society with good performance. However, the basic ECO is constrained by its limited exploitation and exploration abilities when tackling complex optimization problems and exhibits the drawbacks of premature convergence and diminished population diversity. To this end, this paper proposes an enhanced educational competition optimizer, named EDECO, by incorporating estimation of distribution algorithm and replacing some of the best individual(s) using a dynamic fitness distance balancing strategy. On the one hand, the estimation of distribution algorithm enhances the global exploration ability and improves the population quality by establishing a probabilistic model based on the dominant individuals provided by EDECO, which solves the problem that the algorithm is unable to search the neighborhood of the optimal solution. On the other hand, the dynamic fitness distance balancing strategy increases the convergence speed of the algorithm and balances the exploitation and exploration through an adaptive mechanism. Finally, this paper conducts experiments on the proposed EDECO algorithm with 29 CEC 2017 benchmark functions and compares EDECO with four basic algorithms as well as four advanced improved algorithms. The results show that EDECO indeed achieves significant improvements compared to the basic ECO and other compared algorithms, and performs noticeably better than its competitors. Next, this study applies EDECO to 10 engineering constrained optimization problems, and the experimental results show the significant superiority of EDECO in solving real engineering optimization problems. These findings further support the effectiveness and usefulness of our proposed algorithm in solving complex engineering optimization challenges.