{"title":"Recent Advances in Synthetic Notch Receptors for Biomedical Application.","authors":"Luyao Song, Qinmeng Zhang, Hairu Sui, Chenlu Gao, Zhiwei Jiang","doi":"10.1152/ajpcell.00659.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The synthetic Notch receptor has emerged as a potent tool for precisely modulating cellular functions. It constitutes a receptor system rooted in the Notch signaling pathway. SynNotch receptors, coupled with downstream transcription programs, hold promise for organoid and 3D tissue construction. Additionally, it enables the tracking and visualization of intercellular communication. Moreover, engineering SynNotch cells to carry specific receptors markedly enhances the efficacy and safety of immunotherapy. This review delineates the subdomains and tunable mechanisms of SynNotch, summarizing four core modes of combinatorial multiplexing potentially pivotal for regulating SynNotch cell functions. Furthermore, this review summarizes the multifaceted applications, advantages, and limitations of SynNotch, offering fresh insights into its future biomedical utilization.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00659.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthetic Notch receptor has emerged as a potent tool for precisely modulating cellular functions. It constitutes a receptor system rooted in the Notch signaling pathway. SynNotch receptors, coupled with downstream transcription programs, hold promise for organoid and 3D tissue construction. Additionally, it enables the tracking and visualization of intercellular communication. Moreover, engineering SynNotch cells to carry specific receptors markedly enhances the efficacy and safety of immunotherapy. This review delineates the subdomains and tunable mechanisms of SynNotch, summarizing four core modes of combinatorial multiplexing potentially pivotal for regulating SynNotch cell functions. Furthermore, this review summarizes the multifaceted applications, advantages, and limitations of SynNotch, offering fresh insights into its future biomedical utilization.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.