The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yucheng Tian, Giacomo Valle, Paul S Cederna, Stephen W P Kemp
{"title":"The Next Frontier in Neuroprosthetics: Integration of Biomimetic Somatosensory Feedback.","authors":"Yucheng Tian, Giacomo Valle, Paul S Cederna, Stephen W P Kemp","doi":"10.3390/biomimetics10030130","DOIUrl":null,"url":null,"abstract":"<p><p>The development of neuroprosthetic limbs-robotic devices designed to restore lost limb functions for individuals with limb loss or impairment-has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human-machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030130","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of neuroprosthetic limbs-robotic devices designed to restore lost limb functions for individuals with limb loss or impairment-has made significant strides over the past decade, reaching the stage of successful human clinical trials. A current research focus involves providing somatosensory feedback to these devices, which was shown to improve device control performance and embodiment. However, widespread commercialization and clinical adoption of somatosensory neuroprosthetic limbs remain limited. Biomimetic neuroprosthetics, which seeks to resemble the natural sensory processing of tactile information and to deliver biologically relevant inputs to the nervous system, offer a promising path forward. This method could bridge the gap between existing neurotechnology and the future realization of bionic limbs that more closely mimic biological limbs. In this review, we examine the recent key clinical trials that incorporated somatosensory feedback on neuroprosthetic limbs through biomimetic neurostimulation for individuals with missing or paralyzed limbs. Furthermore, we highlight the potential impact of cutting-edge advances in tactile sensing, encoding strategies, neuroelectronic interfaces, and innovative surgical techniques to create a clinically viable human-machine interface that facilitates natural tactile perception and advanced, closed-loop neuroprosthetic control to improve the quality of life of people with sensorimotor impairments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信