Predicting the immunological nonresponse to antiretroviral therapy in people living with HIV: a machine learning-based multicenter large-scale study.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Frontiers in Cellular and Infection Microbiology Pub Date : 2025-03-11 eCollection Date: 2025-01-01 DOI:10.3389/fcimb.2025.1466655
Suling Chen, Lixia Zhang, Jingchun Mao, Zhe Qian, Yuanhui Jiang, Xinrui Gao, Mingzhu Tao, Guangyu Liang, Jie Peng, Shaohang Cai
{"title":"Predicting the immunological nonresponse to antiretroviral therapy in people living with HIV: a machine learning-based multicenter large-scale study.","authors":"Suling Chen, Lixia Zhang, Jingchun Mao, Zhe Qian, Yuanhui Jiang, Xinrui Gao, Mingzhu Tao, Guangyu Liang, Jie Peng, Shaohang Cai","doi":"10.3389/fcimb.2025.1466655","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although highly active antiretroviral therapy (HAART) has greatly enhanced the prognosis for people living with HIV (PLWH), some individuals fail to achieve adequate immune reconstitution, known as immunological nonresponse (INR), which is linked to poor prognosis and higher mortality. However, the early prediction and intervention of INR remains challenging in South China.</p><p><strong>Methods: </strong>This study included 1,577 PLWH who underwent at least two years of HAART and clinical follow-up between 2017 and 2022 at two major tertiary hospitals in South China. We utilized logistic multivariate regression to identify independent predictors of INR and employed restricted cubic splines (RCS) for nonlinear analysis. We also developed several machine-learning models, assessing their performance using internal and external datasets to generate receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The best-performing model was further interpreted using Shapley additive explanations (SHAP) values.</p><p><strong>Results: </strong>Independent predictors of INR included baseline, 6-month and 12-month CD4+ T cell counts, baseline hemoglobin, and 6-month hemoglobin levels. RCS analysis highlighted significant nonlinear relationships between baseline CD4+ T cells, 12-month CD4+ T cells and baseline hemoglobin with INR. The Random Forest model demonstrated superior predictive accuracy, with ROC areas of 0.866, 0.943, and 0.897 across the datasets. Calibration was robust, with Brier scores of 0.136, 0.102, and 0.126. SHAP values indicated that early CD4+T cell counts and CD4/CD8 ratio were crucial in predicting INR.</p><p><strong>Conclusions: </strong>This study introduces the random forest model to predict incomplete immune reconstitution in PLWH, which can significantly assist clinicians in the early prediction and intervention of INR among PLWH.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1466655"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11933112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1466655","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although highly active antiretroviral therapy (HAART) has greatly enhanced the prognosis for people living with HIV (PLWH), some individuals fail to achieve adequate immune reconstitution, known as immunological nonresponse (INR), which is linked to poor prognosis and higher mortality. However, the early prediction and intervention of INR remains challenging in South China.

Methods: This study included 1,577 PLWH who underwent at least two years of HAART and clinical follow-up between 2017 and 2022 at two major tertiary hospitals in South China. We utilized logistic multivariate regression to identify independent predictors of INR and employed restricted cubic splines (RCS) for nonlinear analysis. We also developed several machine-learning models, assessing their performance using internal and external datasets to generate receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). The best-performing model was further interpreted using Shapley additive explanations (SHAP) values.

Results: Independent predictors of INR included baseline, 6-month and 12-month CD4+ T cell counts, baseline hemoglobin, and 6-month hemoglobin levels. RCS analysis highlighted significant nonlinear relationships between baseline CD4+ T cells, 12-month CD4+ T cells and baseline hemoglobin with INR. The Random Forest model demonstrated superior predictive accuracy, with ROC areas of 0.866, 0.943, and 0.897 across the datasets. Calibration was robust, with Brier scores of 0.136, 0.102, and 0.126. SHAP values indicated that early CD4+T cell counts and CD4/CD8 ratio were crucial in predicting INR.

Conclusions: This study introduces the random forest model to predict incomplete immune reconstitution in PLWH, which can significantly assist clinicians in the early prediction and intervention of INR among PLWH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
1817
审稿时长
14 weeks
期刊介绍: Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信