Jiang Ding, Jingyu Li, Tianbo Lan, Kai He, Qiyang Zuo
{"title":"The Design, Modeling, and Experiment of a Novel Diving-Beetle-Inspired Paddling Propulsion Robot.","authors":"Jiang Ding, Jingyu Li, Tianbo Lan, Kai He, Qiyang Zuo","doi":"10.3390/biomimetics10030182","DOIUrl":null,"url":null,"abstract":"<p><p>Bionic paddling robots, as a novel type of underwater robot, demonstrate significant potential in the fields of underwater exploration and development. However, current research on bionic paddling robots primarily focuses on the motion mechanisms of large organisms such as frogs, while the exploration of small and highly agile bionic propulsion robots remains relatively limited. Additionally, existing biomimetic designs often face challenges such as structural complexity and cumbersome control systems, which hinder their practical applications. To address these challenges, this study proposes a novel diving-beetle-inspired paddling robot, drawing inspiration from the low-resistance physiological structure and efficient paddling locomotion of diving beetles. Specifically, a passive bionic swimming foot and a periodic paddling propulsion mechanism were designed based on the leg movement patterns of diving beetles, achieving highly efficient propulsion performance. In the design process, a combination of incomplete gears and torsion springs was employed, significantly reducing the driving frequency of servos and simplifying control complexity. Through dynamic simulations and experimental validation, the robot demonstrated a maximum forward speed of 0.82 BL/s and a turning speed of 18°/s. The results indicate that this design not only significantly improves propulsion efficiency and swimming agility but also provides new design insights and technical references for the development of small bionic underwater robots.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030182","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bionic paddling robots, as a novel type of underwater robot, demonstrate significant potential in the fields of underwater exploration and development. However, current research on bionic paddling robots primarily focuses on the motion mechanisms of large organisms such as frogs, while the exploration of small and highly agile bionic propulsion robots remains relatively limited. Additionally, existing biomimetic designs often face challenges such as structural complexity and cumbersome control systems, which hinder their practical applications. To address these challenges, this study proposes a novel diving-beetle-inspired paddling robot, drawing inspiration from the low-resistance physiological structure and efficient paddling locomotion of diving beetles. Specifically, a passive bionic swimming foot and a periodic paddling propulsion mechanism were designed based on the leg movement patterns of diving beetles, achieving highly efficient propulsion performance. In the design process, a combination of incomplete gears and torsion springs was employed, significantly reducing the driving frequency of servos and simplifying control complexity. Through dynamic simulations and experimental validation, the robot demonstrated a maximum forward speed of 0.82 BL/s and a turning speed of 18°/s. The results indicate that this design not only significantly improves propulsion efficiency and swimming agility but also provides new design insights and technical references for the development of small bionic underwater robots.