Tianyi Yao, Hongfei Yu, Zhongzhi Qin, Li Sun, Jiantao Wu
{"title":"Bio-Stimulated Lower Limb Rehabilitation Robot Semantic Analogy Fit Design.","authors":"Tianyi Yao, Hongfei Yu, Zhongzhi Qin, Li Sun, Jiantao Wu","doi":"10.3390/biomimetics10030134","DOIUrl":null,"url":null,"abstract":"<p><p>In order to solve the problem of insufficient design applicability in the field of lower limb rehabilitation, such as interaction, experience comfort, and modeling color, a biological excitation function system was used to guide the solution of the functional scheme of lower limb rehabilitation products, and the transformation of lower limb rehabilitation products in functional interaction, experience, and morphological color design driven by biological information-driven cross-domain mapping was improved. We used patent knowledge mining to study the product functional requirements of lower limb rehabilitation products. The results were used to screen the required biological prototypes, and the biological incentives were used to guide the design problems. According to the principle of analogy and similarity calculation, the similarity matrix was obtained, and then the strategy was analyzed. Through the analogy of functional system-product technology engineering systems, the engineering relationship between multi-biological and multi-design elements was determined. We realized the biological replacement and upgrading of product functions under biological stimulation to guide the design of lower limb rehabilitation products. The accurate quantitative biological information of multi-biological analogy fit has the significance of optimizing the training effect, improving the operation efficiency, and improving the morphology and modeling of the lower limb rehabilitation product engineering transformation and design. The acquisition rate of the functional design requirements of lower limb rehabilitation products based on text mining reached 95%, and the accuracy of the biological design prototype obtained through similarity calculation was higher than 79%, which verified the feasibility of the accurate bioinformatics design method and improved the rigor of the bioinformatics biomimetic design method.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to solve the problem of insufficient design applicability in the field of lower limb rehabilitation, such as interaction, experience comfort, and modeling color, a biological excitation function system was used to guide the solution of the functional scheme of lower limb rehabilitation products, and the transformation of lower limb rehabilitation products in functional interaction, experience, and morphological color design driven by biological information-driven cross-domain mapping was improved. We used patent knowledge mining to study the product functional requirements of lower limb rehabilitation products. The results were used to screen the required biological prototypes, and the biological incentives were used to guide the design problems. According to the principle of analogy and similarity calculation, the similarity matrix was obtained, and then the strategy was analyzed. Through the analogy of functional system-product technology engineering systems, the engineering relationship between multi-biological and multi-design elements was determined. We realized the biological replacement and upgrading of product functions under biological stimulation to guide the design of lower limb rehabilitation products. The accurate quantitative biological information of multi-biological analogy fit has the significance of optimizing the training effect, improving the operation efficiency, and improving the morphology and modeling of the lower limb rehabilitation product engineering transformation and design. The acquisition rate of the functional design requirements of lower limb rehabilitation products based on text mining reached 95%, and the accuracy of the biological design prototype obtained through similarity calculation was higher than 79%, which verified the feasibility of the accurate bioinformatics design method and improved the rigor of the bioinformatics biomimetic design method.