Biomimetic Polyurethanes in Tissue Engineering.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Edyta Hebda, Krzysztof Pielichowski
{"title":"Biomimetic Polyurethanes in Tissue Engineering.","authors":"Edyta Hebda, Krzysztof Pielichowski","doi":"10.3390/biomimetics10030184","DOIUrl":null,"url":null,"abstract":"<p><p>Inspiration from nature is a promising tool for the design of new polymeric biomaterials, especially for frontier technological areas such as tissue engineering. In tissue engineering, polyurethane-based implants have gained considerable attention, as they are materials that can be designed to meet the requirements imposed by their final applications. The choice of their building blocks (which are used in the synthesis as macrodiols, diisocyanates, and chain extenders) can be implemented to obtain biomimetic structures that can mimic native tissue in terms of mechanical, morphological, and surface properties. In recent years, due to their excellent chemical stability, biocompatibility, and low cytotoxicity, polyurethanes have been widely used in biomedical applications. Biomimetic materials, with their inherent nature of mimicking natural materials, are possible thanks to recent advances in manufacturing technology. The aim of this review is to provide a critical overview of relevant promising studies on polyurethane scaffolds, including those based on non-isocyanate polyurethanes, for the regeneration of selected soft (cardiac muscle, blood vessels, skeletal muscle) and hard (bone tissue) tissues.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspiration from nature is a promising tool for the design of new polymeric biomaterials, especially for frontier technological areas such as tissue engineering. In tissue engineering, polyurethane-based implants have gained considerable attention, as they are materials that can be designed to meet the requirements imposed by their final applications. The choice of their building blocks (which are used in the synthesis as macrodiols, diisocyanates, and chain extenders) can be implemented to obtain biomimetic structures that can mimic native tissue in terms of mechanical, morphological, and surface properties. In recent years, due to their excellent chemical stability, biocompatibility, and low cytotoxicity, polyurethanes have been widely used in biomedical applications. Biomimetic materials, with their inherent nature of mimicking natural materials, are possible thanks to recent advances in manufacturing technology. The aim of this review is to provide a critical overview of relevant promising studies on polyurethane scaffolds, including those based on non-isocyanate polyurethanes, for the regeneration of selected soft (cardiac muscle, blood vessels, skeletal muscle) and hard (bone tissue) tissues.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信