Structural and Experimental Study of a Multi-Finger Synergistic Adaptive Humanoid Dexterous Hand.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Shengke Cao, Guanjun Bao, Lufeng Pan, Bangchu Yang, Xuanyi Zhou
{"title":"Structural and Experimental Study of a Multi-Finger Synergistic Adaptive Humanoid Dexterous Hand.","authors":"Shengke Cao, Guanjun Bao, Lufeng Pan, Bangchu Yang, Xuanyi Zhou","doi":"10.3390/biomimetics10030155","DOIUrl":null,"url":null,"abstract":"<p><p>As the end-effector of a humanoid robot, the dexterous hand plays a crucial role in the process of robot execution. However, due to the complicated and delicate structure of the human hand, it is difficult to replicate human hand functionality, balancing structural complexity, and cost. To address the problem, the article introduces the design and development of a multi-finger synergistic adaptive humanoid dexterous hand with underactuation flexible articulated fingers and integrated pressure sensors. The proposed hand achieves force feedback control, minimizes actuator use while enabling diverse grasping postures, and demonstrates the capability to handle everyday objects. It combines advanced bionics with innovative design to optimize flexibility, ease of manufacturing, and cost-effectiveness.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030155","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the end-effector of a humanoid robot, the dexterous hand plays a crucial role in the process of robot execution. However, due to the complicated and delicate structure of the human hand, it is difficult to replicate human hand functionality, balancing structural complexity, and cost. To address the problem, the article introduces the design and development of a multi-finger synergistic adaptive humanoid dexterous hand with underactuation flexible articulated fingers and integrated pressure sensors. The proposed hand achieves force feedback control, minimizes actuator use while enabling diverse grasping postures, and demonstrates the capability to handle everyday objects. It combines advanced bionics with innovative design to optimize flexibility, ease of manufacturing, and cost-effectiveness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信