Inhibitory effects of silver and copper oxide nanoparticles, synthesized using Juglans regia green husk aqueous extract, on human insulin fibrillation.
IF 2.6 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Inhibitory effects of silver and copper oxide nanoparticles, synthesized using <i>Juglans regia</i> green husk aqueous extract, on human insulin fibrillation.","authors":"Setayesh Shevidi, Seyyed Abolghasem Ghadami, Parinaz Ghadam, Neda Arghand","doi":"10.1007/s13205-025-04257-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research indicates that nanoparticles can serve as tools for the diagnosis and treatment of diseases. This study investigates the inhibitory effects of silver and copper oxide nanoparticles, synthesized using <i>Juglans regia</i> green husk aqueous extract, on human insulin fibrillation. Initially, the formation of amyloid fibrils in recombinant human insulin protein was examined under various buffers and by altering physicochemical conditions, such as pH and temperature, identifying optimal conditions for fibril formation. The nanoparticles were synthesized and characterized for size using dynamic light scattering (DLS), morphology via scanning electron microscopy (SEM), and surface charge through zeta potential analysis. Utilizing biochemical and biophysical techniques, including turbidimetry, DLS, SEM, and fluorescence spectroscopy, we demonstrate that both nanoparticle types effectively inhibit insulin fibrillation, with copper nanoparticles exhibiting superior efficacy. Bioinformatics analyses, combined with zeta potential measurements, suggest that the inhibitory effects of the nanoparticles arise from interactions with charged regions of the insulin molecule. These findings highlight the critical role of nanoparticle characteristics in modulating protein aggregation and present promising therapeutic potential for addressing amyloid-related diseases. Future research should aim to optimize nanoparticle design and evaluate their pharmacokinetics to improve their clinical applicability.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 4","pages":"98"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930910/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-025-04257-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research indicates that nanoparticles can serve as tools for the diagnosis and treatment of diseases. This study investigates the inhibitory effects of silver and copper oxide nanoparticles, synthesized using Juglans regia green husk aqueous extract, on human insulin fibrillation. Initially, the formation of amyloid fibrils in recombinant human insulin protein was examined under various buffers and by altering physicochemical conditions, such as pH and temperature, identifying optimal conditions for fibril formation. The nanoparticles were synthesized and characterized for size using dynamic light scattering (DLS), morphology via scanning electron microscopy (SEM), and surface charge through zeta potential analysis. Utilizing biochemical and biophysical techniques, including turbidimetry, DLS, SEM, and fluorescence spectroscopy, we demonstrate that both nanoparticle types effectively inhibit insulin fibrillation, with copper nanoparticles exhibiting superior efficacy. Bioinformatics analyses, combined with zeta potential measurements, suggest that the inhibitory effects of the nanoparticles arise from interactions with charged regions of the insulin molecule. These findings highlight the critical role of nanoparticle characteristics in modulating protein aggregation and present promising therapeutic potential for addressing amyloid-related diseases. Future research should aim to optimize nanoparticle design and evaluate their pharmacokinetics to improve their clinical applicability.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.