Review of Electrohydraulic Actuators Inspired by the HASEL Actuator.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Levi Tynan, Upul Gunawardana, Ranjith Liyanapathirana, Osura Perera, Daniele Esposito, Jessica Centracchio, Gaetano Gargiulo
{"title":"Review of Electrohydraulic Actuators Inspired by the HASEL Actuator.","authors":"Levi Tynan, Upul Gunawardana, Ranjith Liyanapathirana, Osura Perera, Daniele Esposito, Jessica Centracchio, Gaetano Gargiulo","doi":"10.3390/biomimetics10030152","DOIUrl":null,"url":null,"abstract":"<p><p>The muscle-like movement and speed of the electrohydraulic actuator have granted it much attention in soft robotics. Our aim is to review the advancements in electrohydraulic actuators inspired by the Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. With this paper, we focus on the performance of 21 electrohydraulic actuator designs developed across five Universities, ranging from the earliest HASEL designs to the latest electrohydraulic designs. These actuators reported up to 60 N forces and contracting strains of up to 99%. The actuators with the best overall performance so far have been the Quadrant HASEL actuator and the HEXEL actuator, developed at the University of Colorado Boulder. However, notable is also the HALVE actuator (produced by ETH Zürich, Switzerland), which, by using a 5 µm PVDF-TrFE-CTFE film with a relative permittivity of 40, produced 100 times the electrostatic force of any of the electrohydraulic actuators under review. The latter shows that there is room for improvement as low force and displacement still limit the viability of the soft actuators in real-life applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030152","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The muscle-like movement and speed of the electrohydraulic actuator have granted it much attention in soft robotics. Our aim is to review the advancements in electrohydraulic actuators inspired by the Hydraulically Amplified Self-healing Electrostatic (HASEL) actuator. With this paper, we focus on the performance of 21 electrohydraulic actuator designs developed across five Universities, ranging from the earliest HASEL designs to the latest electrohydraulic designs. These actuators reported up to 60 N forces and contracting strains of up to 99%. The actuators with the best overall performance so far have been the Quadrant HASEL actuator and the HEXEL actuator, developed at the University of Colorado Boulder. However, notable is also the HALVE actuator (produced by ETH Zürich, Switzerland), which, by using a 5 µm PVDF-TrFE-CTFE film with a relative permittivity of 40, produced 100 times the electrostatic force of any of the electrohydraulic actuators under review. The latter shows that there is room for improvement as low force and displacement still limit the viability of the soft actuators in real-life applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信