Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qinghua Chen, Gang Yao, Lin Yang, Tangying Liu, Jin Sun, Shuxiang Cai
{"title":"Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm.","authors":"Qinghua Chen, Gang Yao, Lin Yang, Tangying Liu, Jin Sun, Shuxiang Cai","doi":"10.3390/biomimetics10030179","DOIUrl":null,"url":null,"abstract":"<p><p>Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, a hybrid approach combining the nearest neighbor search with random search is employed for initial population generation. Additionally, crossover operations and destroy and repair operators are integrated to update the whale's position, significantly enhancing the algorithm's search efficiency and optimization performance. Furthermore, variable neighborhood search is utilized for local optimization to refine the solutions. The proposed MWOA has been tested against several algorithms, including the original whale optimization algorithm, genetic algorithm, ant colony optimization, hybrid particle swarm optimization, and simulated annealing, using traveling salesman problems as benchmarks. Results demonstrate that MWOA outperforms these algorithms in both solution quality and stability. Moreover, when applied to ship replenishment path planning problems of varying scales, MWOA consistently achieves superior performance compared to the other algorithms. The proposed algorithm demonstrates high adaptability in addressing diverse ship replenishment path planning problems, delivering efficient, high-quality, and reliable solutions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, a hybrid approach combining the nearest neighbor search with random search is employed for initial population generation. Additionally, crossover operations and destroy and repair operators are integrated to update the whale's position, significantly enhancing the algorithm's search efficiency and optimization performance. Furthermore, variable neighborhood search is utilized for local optimization to refine the solutions. The proposed MWOA has been tested against several algorithms, including the original whale optimization algorithm, genetic algorithm, ant colony optimization, hybrid particle swarm optimization, and simulated annealing, using traveling salesman problems as benchmarks. Results demonstrate that MWOA outperforms these algorithms in both solution quality and stability. Moreover, when applied to ship replenishment path planning problems of varying scales, MWOA consistently achieves superior performance compared to the other algorithms. The proposed algorithm demonstrates high adaptability in addressing diverse ship replenishment path planning problems, delivering efficient, high-quality, and reliable solutions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信