Qinghua Chen, Gang Yao, Lin Yang, Tangying Liu, Jin Sun, Shuxiang Cai
{"title":"Research on Ship Replenishment Path Planning Based on the Modified Whale Optimization Algorithm.","authors":"Qinghua Chen, Gang Yao, Lin Yang, Tangying Liu, Jin Sun, Shuxiang Cai","doi":"10.3390/biomimetics10030179","DOIUrl":null,"url":null,"abstract":"<p><p>Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, a hybrid approach combining the nearest neighbor search with random search is employed for initial population generation. Additionally, crossover operations and destroy and repair operators are integrated to update the whale's position, significantly enhancing the algorithm's search efficiency and optimization performance. Furthermore, variable neighborhood search is utilized for local optimization to refine the solutions. The proposed MWOA has been tested against several algorithms, including the original whale optimization algorithm, genetic algorithm, ant colony optimization, hybrid particle swarm optimization, and simulated annealing, using traveling salesman problems as benchmarks. Results demonstrate that MWOA outperforms these algorithms in both solution quality and stability. Moreover, when applied to ship replenishment path planning problems of varying scales, MWOA consistently achieves superior performance compared to the other algorithms. The proposed algorithm demonstrates high adaptability in addressing diverse ship replenishment path planning problems, delivering efficient, high-quality, and reliable solutions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030179","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ship replenishment path planning has always been a critical concern for researchers in the field of security. This study proposes a modified whale optimization algorithm (MWOA) to address single-task ship replenishment path planning problems. To ensure high-quality initial solutions and maintain population diversity, a hybrid approach combining the nearest neighbor search with random search is employed for initial population generation. Additionally, crossover operations and destroy and repair operators are integrated to update the whale's position, significantly enhancing the algorithm's search efficiency and optimization performance. Furthermore, variable neighborhood search is utilized for local optimization to refine the solutions. The proposed MWOA has been tested against several algorithms, including the original whale optimization algorithm, genetic algorithm, ant colony optimization, hybrid particle swarm optimization, and simulated annealing, using traveling salesman problems as benchmarks. Results demonstrate that MWOA outperforms these algorithms in both solution quality and stability. Moreover, when applied to ship replenishment path planning problems of varying scales, MWOA consistently achieves superior performance compared to the other algorithms. The proposed algorithm demonstrates high adaptability in addressing diverse ship replenishment path planning problems, delivering efficient, high-quality, and reliable solutions.