A Labor Division Artificial Gorilla Troops Algorithm for Engineering Optimization.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Chenhuizi Liu, Bowen Wu, Liangkuan Zhu
{"title":"A Labor Division Artificial Gorilla Troops Algorithm for Engineering Optimization.","authors":"Chenhuizi Liu, Bowen Wu, Liangkuan Zhu","doi":"10.3390/biomimetics10030127","DOIUrl":null,"url":null,"abstract":"<p><p>The Artificial Gorilla Troops Optimizer (GTO) has emerged as an efficient metaheuristic technique for solving complex optimization problems. However, the conventional GTO algorithm has a critical limitation: all individuals, regardless of their roles, utilize identical search equations and perform exploration and exploitation sequentially. This uniform approach neglects the potential benefits of labor division, consequently restricting the algorithm's performance. To address this limitation, we propose an enhanced Labor Division Gorilla Troops Optimizer (LDGTO), which incorporates natural mechanisms of labor division and outcome allocation. In the labor division phase, a stimulus-response model is designed to differentiate exploration and exploitation tasks, enabling gorilla individuals to adaptively adjust their search equations based on environmental changes. In the outcome allocation phase, three behavioral development modes-self-enhancement, competence maintenance, and elimination-are implemented, corresponding to three developmental stages: elite, average, and underperforming individuals. The performance of LDGTO is rigorously evaluated through three benchmark test suites, comprising 12 unimodal, 25 multimodal, and 10 combinatorial functions, as well as two real-world engineering applications, including four-bar transplanter mechanism design and color image segmentation. Experimental results demonstrate that LDGTO consistently outperforms three variants of GTO and seven state-of-the-art metaheuristic algorithms in most test cases.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030127","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Artificial Gorilla Troops Optimizer (GTO) has emerged as an efficient metaheuristic technique for solving complex optimization problems. However, the conventional GTO algorithm has a critical limitation: all individuals, regardless of their roles, utilize identical search equations and perform exploration and exploitation sequentially. This uniform approach neglects the potential benefits of labor division, consequently restricting the algorithm's performance. To address this limitation, we propose an enhanced Labor Division Gorilla Troops Optimizer (LDGTO), which incorporates natural mechanisms of labor division and outcome allocation. In the labor division phase, a stimulus-response model is designed to differentiate exploration and exploitation tasks, enabling gorilla individuals to adaptively adjust their search equations based on environmental changes. In the outcome allocation phase, three behavioral development modes-self-enhancement, competence maintenance, and elimination-are implemented, corresponding to three developmental stages: elite, average, and underperforming individuals. The performance of LDGTO is rigorously evaluated through three benchmark test suites, comprising 12 unimodal, 25 multimodal, and 10 combinatorial functions, as well as two real-world engineering applications, including four-bar transplanter mechanism design and color image segmentation. Experimental results demonstrate that LDGTO consistently outperforms three variants of GTO and seven state-of-the-art metaheuristic algorithms in most test cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信