Rejection of an emerging small neutral organic micropollutant by in-situ nanofiltration membrane modification for water treatment.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Mei An, Leonardo Gutierrez, Arnout D'Haese, Rino Morent, Nathalie De Geyter, Emile Cornelissen
{"title":"Rejection of an emerging small neutral organic micropollutant by in-situ nanofiltration membrane modification for water treatment.","authors":"Mei An, Leonardo Gutierrez, Arnout D'Haese, Rino Morent, Nathalie De Geyter, Emile Cornelissen","doi":"10.1016/j.jenvman.2025.125052","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofiltration (NF) membranes are recognized for their potential in removing organic micropollutants (OMPs). However, the limited efficiency of commercial NF membranes in removing small and neutral emerging OMPs has impeded its wide use. This study explores the effectiveness of in-situ modification of commercial NF270 membranes using two monomers for the removal of 1H-benzotriazole (BTA). For the first time, this work investigates the physicochemical properties of commercial NF270 membranes grafted with these two monomers, 3-(trimethoxysilyl)propyl methacrylate and 2-(diethylamino)ethyl methacrylate, using different surface characterization techniques. The study also evaluates the performance of both unmodified and modified membranes in the rejection of BTA and compares the results with state-of-the-art monomers. The 2-(diethylamino)ethyl methacrylate-grafted membranes show a modest enhancement of 12 % in BTA rejection. In contrast, the 3-(trimethoxysilyl)propyl methacrylate-modified membranes exhibit a remarkable 107 % improvement in BTA rejection compared to the virgin NF270 membrane, achieving the highest increase in OMP removal among current state-of-the-art monomer-modified membranes reported in previous research. This approach effectively removes BTA primarily through the mechanisms of size exclusion and hydrophobic interactions. This research presents a comprehensive strategy for surface modification of NF membranes, offering potential improvements in the rejection of small and neutral OMPs for water treatment.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"380 ","pages":"125052"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.125052","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiltration (NF) membranes are recognized for their potential in removing organic micropollutants (OMPs). However, the limited efficiency of commercial NF membranes in removing small and neutral emerging OMPs has impeded its wide use. This study explores the effectiveness of in-situ modification of commercial NF270 membranes using two monomers for the removal of 1H-benzotriazole (BTA). For the first time, this work investigates the physicochemical properties of commercial NF270 membranes grafted with these two monomers, 3-(trimethoxysilyl)propyl methacrylate and 2-(diethylamino)ethyl methacrylate, using different surface characterization techniques. The study also evaluates the performance of both unmodified and modified membranes in the rejection of BTA and compares the results with state-of-the-art monomers. The 2-(diethylamino)ethyl methacrylate-grafted membranes show a modest enhancement of 12 % in BTA rejection. In contrast, the 3-(trimethoxysilyl)propyl methacrylate-modified membranes exhibit a remarkable 107 % improvement in BTA rejection compared to the virgin NF270 membrane, achieving the highest increase in OMP removal among current state-of-the-art monomer-modified membranes reported in previous research. This approach effectively removes BTA primarily through the mechanisms of size exclusion and hydrophobic interactions. This research presents a comprehensive strategy for surface modification of NF membranes, offering potential improvements in the rejection of small and neutral OMPs for water treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信