Single-Trial Electroencephalography Discrimination of Real, Regulated, Isometric Wrist Extension and Wrist Flexion.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Abdul-Khaaliq Mohamed, Vered Aharonson
{"title":"Single-Trial Electroencephalography Discrimination of Real, Regulated, Isometric Wrist Extension and Wrist Flexion.","authors":"Abdul-Khaaliq Mohamed, Vered Aharonson","doi":"10.3390/biomimetics10030187","DOIUrl":null,"url":null,"abstract":"<p><p>Improved interpretation of electroencephalography (EEG) associated with the neural control of essential hand movements, including wrist extension (WE) and wrist flexion (WF), could improve the performance of brain-computer interfaces (BCIs). These BCIs could control a prosthetic or orthotic hand to enable motor-impaired individuals to regain the performance of activities of daily living. This study investigated the interpretation of neural signal patterns associated with kinematic differences between real, regulated, isometric WE and WF movements from recorded EEG data. We used 128-channel EEG data recorded from 14 participants performing repetitions of the wrist movements, where the force, speed, and range of motion were regulated. The data were filtered into four frequency bands: delta and theta, mu and beta, low gamma, and high gamma. Within each frequency band, independent component analysis was used to isolate signals originating from seven cortical regions of interest. Features were extracted from these signals using a time-frequency algorithm and classified using Mahalanobis distance clustering. We successfully classified bilateral and unilateral WE and WF movements, with respective accuracies of 90.68% and 69.80%. The results also demonstrated that all frequency bands and regions of interest contained motor-related discriminatory information. Bilateral discrimination relied more on the mu and beta bands, while unilateral discrimination favoured the gamma bands. These results suggest that EEG-based BCIs could benefit from the extraction of features from multiple frequencies and cortical regions.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030187","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Improved interpretation of electroencephalography (EEG) associated with the neural control of essential hand movements, including wrist extension (WE) and wrist flexion (WF), could improve the performance of brain-computer interfaces (BCIs). These BCIs could control a prosthetic or orthotic hand to enable motor-impaired individuals to regain the performance of activities of daily living. This study investigated the interpretation of neural signal patterns associated with kinematic differences between real, regulated, isometric WE and WF movements from recorded EEG data. We used 128-channel EEG data recorded from 14 participants performing repetitions of the wrist movements, where the force, speed, and range of motion were regulated. The data were filtered into four frequency bands: delta and theta, mu and beta, low gamma, and high gamma. Within each frequency band, independent component analysis was used to isolate signals originating from seven cortical regions of interest. Features were extracted from these signals using a time-frequency algorithm and classified using Mahalanobis distance clustering. We successfully classified bilateral and unilateral WE and WF movements, with respective accuracies of 90.68% and 69.80%. The results also demonstrated that all frequency bands and regions of interest contained motor-related discriminatory information. Bilateral discrimination relied more on the mu and beta bands, while unilateral discrimination favoured the gamma bands. These results suggest that EEG-based BCIs could benefit from the extraction of features from multiple frequencies and cortical regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信