Jifei Zhang, Hongmei Zhang, Wenfeng Ren, Ling-Ping Xiao, Sanwei Hao, Changyou Shao, Jun Yang
{"title":"Self-Driven Rapid Gelation Technologies for Hydrogels: Synthesis Strategies, Mechanisms, and Applications.","authors":"Jifei Zhang, Hongmei Zhang, Wenfeng Ren, Ling-Ping Xiao, Sanwei Hao, Changyou Shao, Jun Yang","doi":"10.1002/marc.202401052","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid gelation hydrogels have garnered significant attention due to their simple synthesis, high efficiency, low cost, and environmental sustainability, which enable to meet critical demands for scalability and green chemistry for unlocking opportunities across diverse application fields. This review synthesizes current advancements in the mechanisms driving rapid gelation, encompassing self-assembly processes, MXene-triggered gelation, redox-driven reactions, coordination chemistry, Schiff base reactions, and other innovative strategies. The discussion extends to their far-reaching applications, from advanced therapeutic platforms and high-performance energy devices to precision sensors and adaptive soft actuators. By critically evaluating recent progress and addressing existing challenges, this review not only deepens the understanding of rapid gelation mechanisms, but also provides scientific insights and practical guidance to foster interdisciplinary integration and drive material innovation in green synthesis technologies.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401052"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401052","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid gelation hydrogels have garnered significant attention due to their simple synthesis, high efficiency, low cost, and environmental sustainability, which enable to meet critical demands for scalability and green chemistry for unlocking opportunities across diverse application fields. This review synthesizes current advancements in the mechanisms driving rapid gelation, encompassing self-assembly processes, MXene-triggered gelation, redox-driven reactions, coordination chemistry, Schiff base reactions, and other innovative strategies. The discussion extends to their far-reaching applications, from advanced therapeutic platforms and high-performance energy devices to precision sensors and adaptive soft actuators. By critically evaluating recent progress and addressing existing challenges, this review not only deepens the understanding of rapid gelation mechanisms, but also provides scientific insights and practical guidance to foster interdisciplinary integration and drive material innovation in green synthesis technologies.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.