Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Glaucoma and Retinal Diseases.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Kevin Y Wu, Rahma M Osman, Obinna Esomchukwu, Michael Marchand, Bich H Nguyen, Simon D Tran
{"title":"Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Glaucoma and Retinal Diseases.","authors":"Kevin Y Wu, Rahma M Osman, Obinna Esomchukwu, Michael Marchand, Bich H Nguyen, Simon D Tran","doi":"10.1007/5584_2025_854","DOIUrl":null,"url":null,"abstract":"<p><p>Regenerative medicine, cell therapy, and 3D bioprinting represent promising advancements in addressing retinal and glaucomatous diseases. These conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degenerations (IRDs), and glaucomatous optic neuropathy, have complex pathophysiologies that involve neurodegeneration, oxidative stress, and vascular dysfunction. Despite significant progress in conventional therapies, including anti-VEGF injections, laser photocoagulation, and intraocular pressure (IOP)-lowering interventions, these approaches remain limited in reversing disease progression and restoring lost visual function.This chapter explores the potential of emerging regenerative therapies to fill these critical gaps. For retinal diseases, cell replacement strategies using human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) have demonstrated encouraging outcomes in clinical trials, though challenges in delivery and long-term integration persist. Similarly, neuroprotective strategies and the use of retinal progenitor cells hold promise for preserving and restoring vision in degenerative retinal conditions. Advances in 3D bioprinting and retinal organoids further augment these efforts, offering innovative tools for disease modeling and therapy development.In glaucoma, regenerative approaches targeting trabecular meshwork (TM) dysfunction and retinal ganglion cell (RGC) loss are gaining traction. Stem cell-based therapies have shown potential in restoring TM functionality and providing neuroprotection, while innovative delivery systems and bioengineered platforms aim to enhance therapeutic efficacy and safety.This chapter provides an overview of the evolving landscape of regenerative therapies for retinal and glaucomatous diseases, highlighting current advancements, ongoing challenges, and future directions in the field. These approaches, while still emerging, hold the potential to transform the management of these complex ocular diseases.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2025_854","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Regenerative medicine, cell therapy, and 3D bioprinting represent promising advancements in addressing retinal and glaucomatous diseases. These conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degenerations (IRDs), and glaucomatous optic neuropathy, have complex pathophysiologies that involve neurodegeneration, oxidative stress, and vascular dysfunction. Despite significant progress in conventional therapies, including anti-VEGF injections, laser photocoagulation, and intraocular pressure (IOP)-lowering interventions, these approaches remain limited in reversing disease progression and restoring lost visual function.This chapter explores the potential of emerging regenerative therapies to fill these critical gaps. For retinal diseases, cell replacement strategies using human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) have demonstrated encouraging outcomes in clinical trials, though challenges in delivery and long-term integration persist. Similarly, neuroprotective strategies and the use of retinal progenitor cells hold promise for preserving and restoring vision in degenerative retinal conditions. Advances in 3D bioprinting and retinal organoids further augment these efforts, offering innovative tools for disease modeling and therapy development.In glaucoma, regenerative approaches targeting trabecular meshwork (TM) dysfunction and retinal ganglion cell (RGC) loss are gaining traction. Stem cell-based therapies have shown potential in restoring TM functionality and providing neuroprotection, while innovative delivery systems and bioengineered platforms aim to enhance therapeutic efficacy and safety.This chapter provides an overview of the evolving landscape of regenerative therapies for retinal and glaucomatous diseases, highlighting current advancements, ongoing challenges, and future directions in the field. These approaches, while still emerging, hold the potential to transform the management of these complex ocular diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信