High-Throughput Screening of 1D Chalcogenide Cathode Materials Beyond VS4 for Rechargeable Magnesium-ion Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-03-26 DOI:10.1002/cssc.202500181
Lujie Jin, Yujin Ji, Youyong Li
{"title":"High-Throughput Screening of 1D Chalcogenide Cathode Materials Beyond VS4 for Rechargeable Magnesium-ion Batteries.","authors":"Lujie Jin, Yujin Ji, Youyong Li","doi":"10.1002/cssc.202500181","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to their high theoretical specific capacity and abundance of anodes, rechargeable Mg-ion batteries (rMIBs) have emerged as a supplement for post-Li generation. However, the strong Coulomb interactions on Mg2+ cations lead to inefficient storage and transport in the cathode, which severely restricts the actual performance of rMIBs. Herein, a virtual screening of the 1D material database (C1DB) is proposed to identify novel rMIB chalcogenide cathodes with large voids for relieving the Coulomb forces. By referring to the representative VS4 material, three potential 1D chalcogenide materials (SiS2, GeS2, and SiSe2) with optimized Coulomb interactions are ultimately screened out for rMIB cathodes. In addition, further theoretical analyses on geometry, electronic structures, and atomic charges reveal the significant roles of the large specific pore volume, low bond covalency, and mildly oxidizing anion element in optimizing rMIB cathode materials. Overall, our work may inspire future experimental and theoretical investigations, potentially accelerating breakthroughs of rMIB and other similar metal-ion batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500181"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500181","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their high theoretical specific capacity and abundance of anodes, rechargeable Mg-ion batteries (rMIBs) have emerged as a supplement for post-Li generation. However, the strong Coulomb interactions on Mg2+ cations lead to inefficient storage and transport in the cathode, which severely restricts the actual performance of rMIBs. Herein, a virtual screening of the 1D material database (C1DB) is proposed to identify novel rMIB chalcogenide cathodes with large voids for relieving the Coulomb forces. By referring to the representative VS4 material, three potential 1D chalcogenide materials (SiS2, GeS2, and SiSe2) with optimized Coulomb interactions are ultimately screened out for rMIB cathodes. In addition, further theoretical analyses on geometry, electronic structures, and atomic charges reveal the significant roles of the large specific pore volume, low bond covalency, and mildly oxidizing anion element in optimizing rMIB cathode materials. Overall, our work may inspire future experimental and theoretical investigations, potentially accelerating breakthroughs of rMIB and other similar metal-ion batteries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信