Enhancing Sonodynamic Therapy in Prostate Cancer: Cavitation-Induced Cytotoxicity and Mitochondrial Unfolded Protein Response Disruption.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Aysegul Turkkol, Umut Kerem Kolac, Gizem Donmez Yalcin, Mehmet Dincer Bilgin, Abdullah Yalcin, Mehmet Bilgen
{"title":"Enhancing Sonodynamic Therapy in Prostate Cancer: Cavitation-Induced Cytotoxicity and Mitochondrial Unfolded Protein Response Disruption.","authors":"Aysegul Turkkol, Umut Kerem Kolac, Gizem Donmez Yalcin, Mehmet Dincer Bilgin, Abdullah Yalcin, Mehmet Bilgen","doi":"10.1007/s12013-025-01717-2","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer remains a significant health challenge, necessitating more effective and targeted treatment strategies. Sonodynamic therapy (SDT) is a promising, non-invasive approach that utilizes ultrasound-activated sensitizers to induce cancer cell death. However, the role of ultrasound cavitation in enhancing SDT efficacy and its effects on mitochondrial stress responses remain unclear. We hypothesized that increasing cavitation density through optimized ultrasound parameters would enhance Ce6-mediated SDT effectiveness by increasing cytotoxicity, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) loss, and disrupting the mitochondrial unfolded protein response (mtUPR). Prostate cancer cells were treated with Ce6 and exposed to ultrasound with varying duty cycles (50% and 100%) and power intensities (0.5 W/cm<sup>2</sup>, 1 W/cm<sup>2</sup>, and 1.5 W/cm<sup>2</sup>). Cavitation density was measured, and its effects on cell viability, ROS levels, MMP disruption, and mtUPR mediator expression, including activating transcription factor 5 (ATF5), heat shock protein 60 (HSP60), and caseinolytic protease proteolytic subunit (CLPP), were analyzed at protein and mRNA levels. Higher duty cycles significantly increased cavitation density, leading to enhanced cytotoxicity, elevated ROS generation, and greater MMP loss in Ce6-mediated SDT. Additionally, SDT reduced mtUPR mediator expression, with cavitation further amplifying these effects. These findings suggest that cavitation-enhanced SDT may contribute to improved therapeutic efficacy in prostate cancer treatment by modulating mitochondrial stress responses and affecting cell viability. Optimizing ultrasound parameters to maximize cavitation effects may contribute to the development of more effective SDT-based cancer therapies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01717-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer remains a significant health challenge, necessitating more effective and targeted treatment strategies. Sonodynamic therapy (SDT) is a promising, non-invasive approach that utilizes ultrasound-activated sensitizers to induce cancer cell death. However, the role of ultrasound cavitation in enhancing SDT efficacy and its effects on mitochondrial stress responses remain unclear. We hypothesized that increasing cavitation density through optimized ultrasound parameters would enhance Ce6-mediated SDT effectiveness by increasing cytotoxicity, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) loss, and disrupting the mitochondrial unfolded protein response (mtUPR). Prostate cancer cells were treated with Ce6 and exposed to ultrasound with varying duty cycles (50% and 100%) and power intensities (0.5 W/cm2, 1 W/cm2, and 1.5 W/cm2). Cavitation density was measured, and its effects on cell viability, ROS levels, MMP disruption, and mtUPR mediator expression, including activating transcription factor 5 (ATF5), heat shock protein 60 (HSP60), and caseinolytic protease proteolytic subunit (CLPP), were analyzed at protein and mRNA levels. Higher duty cycles significantly increased cavitation density, leading to enhanced cytotoxicity, elevated ROS generation, and greater MMP loss in Ce6-mediated SDT. Additionally, SDT reduced mtUPR mediator expression, with cavitation further amplifying these effects. These findings suggest that cavitation-enhanced SDT may contribute to improved therapeutic efficacy in prostate cancer treatment by modulating mitochondrial stress responses and affecting cell viability. Optimizing ultrasound parameters to maximize cavitation effects may contribute to the development of more effective SDT-based cancer therapies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信