Effect of Capacitation on Proteomic Profile and Mitochondrial Parameters of Spermatozoa in Bulls.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
María Castelló-Ruiz, Sabrina Gacem, Manuel M Sánchez Del Pino, Carlos O Hidalgo, Carolina Tamargo, Manuel Álvarez-Rodríguez, Jesús L Yániz, Miguel A Silvestre
{"title":"Effect of Capacitation on Proteomic Profile and Mitochondrial Parameters of Spermatozoa in Bulls.","authors":"María Castelló-Ruiz, Sabrina Gacem, Manuel M Sánchez Del Pino, Carlos O Hidalgo, Carolina Tamargo, Manuel Álvarez-Rodríguez, Jesús L Yániz, Miguel A Silvestre","doi":"10.1021/acs.jproteome.4c00910","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm capacitation is a critical process for fertilization. This work aims to analyze the effect <i>in vitro</i> capacitation had on the proteome and mitochondrial parameters of bull spermatozoa. Viability, mitochondrial membrane potential (MMP), and reactive oxygen species (mROS) were assessed by flow cytometry in noncapacitated (NC) and <i>in vitro</i> capacitated (IVC) sperm. Proteome was evaluated using SWATH-MS. <i>In vitro</i> capacitation significantly induced a decrease in sperm viability, a high MMP, and an increase in mROS production. Within the group of living spermatozoa, the capacitation significantly induced a decrease in healthy mitochondrial spermatozoa, as well as an increase in mROS production, without affecting the MMP intensity. A total number of 72 differentially abundant proteins were found of which 63 were over-represented in the NC sperm group and 9 in the IVC sperm group. It was observed that many proteins associated with the sperm membrane and acrosome were lost during the capacitation process. For the IVC sperm, the functional enrichment was found in proteins related to the oxidative phosphorylation process. Our results indicate that the capacitation process induces a significant loss of seminal plasma-derived membrane proteins and a significant increase in proteins related with the oxidative phosphorylation (OXPHOS) pathway. Data are available via ProteomeXchange with identifiers PXD056424 and PXD042286.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00910","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sperm capacitation is a critical process for fertilization. This work aims to analyze the effect in vitro capacitation had on the proteome and mitochondrial parameters of bull spermatozoa. Viability, mitochondrial membrane potential (MMP), and reactive oxygen species (mROS) were assessed by flow cytometry in noncapacitated (NC) and in vitro capacitated (IVC) sperm. Proteome was evaluated using SWATH-MS. In vitro capacitation significantly induced a decrease in sperm viability, a high MMP, and an increase in mROS production. Within the group of living spermatozoa, the capacitation significantly induced a decrease in healthy mitochondrial spermatozoa, as well as an increase in mROS production, without affecting the MMP intensity. A total number of 72 differentially abundant proteins were found of which 63 were over-represented in the NC sperm group and 9 in the IVC sperm group. It was observed that many proteins associated with the sperm membrane and acrosome were lost during the capacitation process. For the IVC sperm, the functional enrichment was found in proteins related to the oxidative phosphorylation process. Our results indicate that the capacitation process induces a significant loss of seminal plasma-derived membrane proteins and a significant increase in proteins related with the oxidative phosphorylation (OXPHOS) pathway. Data are available via ProteomeXchange with identifiers PXD056424 and PXD042286.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信