Two-dimensional GaN/Si heterojunctions towards high-performance UV-B photodetectors†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongsheng Jiang, Haiyan Wang, Wenliang Wang and Guoqiang Li
{"title":"Two-dimensional GaN/Si heterojunctions towards high-performance UV-B photodetectors†","authors":"Hongsheng Jiang, Haiyan Wang, Wenliang Wang and Guoqiang Li","doi":"10.1039/D4MH01899K","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) GaN with a tunable bandgap, high electron mobility, and high chemical and thermal stabilities is an ideal choice for high-performance UV-B photodetectors (PDs). However, the realization of 2D GaN based UV-B PDs faces the challenge of simultaneously achieving large-scale preparation and band engineering. In this work, novel UV-B PDs based on wafer-scale 2D GaN/Si heterojunctions have been proposed. Wafer-scale synthesis and band engineering of 2D GaN are realized <em>via</em> a two-step method consisting of magnetron sputtering and high temperature ammonolysis. With well-controlled thickness, the bandgap of 2D GaN is regulated to 3.6 and 4.1 eV. Impressively, novel UV-B PDs based on 2D GaN/Si heterojunctions exhibit a photoresponsivity of 2.2 A W<small><sup>−1</sup></small> at 308 nm at 1 V, and a fast response speed with a rise/decay time of 1.3/1.1 ms, simultaneously. This work provides a resolution for high-performance UV-B PDs through the controllable growth of 2D GaN, and the proposed synthesis strategy significantly broadens the application prospects of 2D GaN in the field of UV optoelectronics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 12","pages":" 4379-4387"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d4mh01899k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) GaN with a tunable bandgap, high electron mobility, and high chemical and thermal stabilities is an ideal choice for high-performance UV-B photodetectors (PDs). However, the realization of 2D GaN based UV-B PDs faces the challenge of simultaneously achieving large-scale preparation and band engineering. In this work, novel UV-B PDs based on wafer-scale 2D GaN/Si heterojunctions have been proposed. Wafer-scale synthesis and band engineering of 2D GaN are realized via a two-step method consisting of magnetron sputtering and high temperature ammonolysis. With well-controlled thickness, the bandgap of 2D GaN is regulated to 3.6 and 4.1 eV. Impressively, novel UV-B PDs based on 2D GaN/Si heterojunctions exhibit a photoresponsivity of 2.2 A W−1 at 308 nm at 1 V, and a fast response speed with a rise/decay time of 1.3/1.1 ms, simultaneously. This work provides a resolution for high-performance UV-B PDs through the controllable growth of 2D GaN, and the proposed synthesis strategy significantly broadens the application prospects of 2D GaN in the field of UV optoelectronics.

Abstract Image

面向高性能UV-B光电探测器的二维GaN/Si异质结。
二维(2D) GaN具有可调带隙,高电子迁移率以及高化学和热稳定性,是高性能UV-B光电探测器(pd)的理想选择。然而,基于GaN的二维UV-B PDs的实现面临着同时实现大规模制备和能带工程的挑战。在这项工作中,提出了基于晶片尺度的二维GaN/Si异质结的新型UV-B pd。采用磁控溅射和高温氨解两步法,实现了二维氮化镓的片级合成和能带工程。在厚度控制良好的情况下,二维GaN的带隙可调节到3.6和4.1 eV。令人印象深刻的是,基于二维GaN/Si异质结的新型UV-B pd在1 V下,在308 nm处具有2.2 a W-1的光响应率,同时具有快速的响应速度,上升/衰减时间为1.3/1.1 ms。本工作通过二维GaN的可控生长为高性能UV- b PDs提供了解决方案,所提出的合成策略显著拓宽了二维GaN在紫外光电子领域的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信