{"title":"Simple Linear Regression Models for Prediction of Ionization Energies, Electron Affinities, and Fundamental Gaps of Atoms and Molecules.","authors":"Rebecca K Carlson","doi":"10.1021/acs.jctc.4c01591","DOIUrl":null,"url":null,"abstract":"<p><p>Linear regression equations were developed for different density functionals using data from the CCCBDB, along with a test set of 89 ionization energies (IE) and 76 electron affinities (EA) so that experimental IE and EA can be predicted from orbital energies. Separate equations were determined for different classes of atoms and molecules. These relationships were also applied to all occupied orbitals to simulate the photoemission spectra of organic molecules with accuracy similar to that of other computational methods at a fraction of the cost. The error for large molecules (up to 200 atoms) can be below 0.2 eV with many functionals for the prediction of the IE and EA.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01591","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Linear regression equations were developed for different density functionals using data from the CCCBDB, along with a test set of 89 ionization energies (IE) and 76 electron affinities (EA) so that experimental IE and EA can be predicted from orbital energies. Separate equations were determined for different classes of atoms and molecules. These relationships were also applied to all occupied orbitals to simulate the photoemission spectra of organic molecules with accuracy similar to that of other computational methods at a fraction of the cost. The error for large molecules (up to 200 atoms) can be below 0.2 eV with many functionals for the prediction of the IE and EA.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.