{"title":"Iminium catalysis meets Diels–Alderase","authors":"Naoki Kato, Shingo Nagano","doi":"10.1038/s41929-025-01312-x","DOIUrl":null,"url":null,"abstract":"In the organocatalytic Diels–Alder (DA) reactions, a simple amine is used as a catalyst to form an iminium adduct as an electron-withdrawing group that speeds up reaction with the diene. Now iminium catalysis is identified in Diels–Alderase (DAase) reactions, enabling to substantially broaden the DAase platform.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 3","pages":"202-203"},"PeriodicalIF":42.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01312-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01312-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the organocatalytic Diels–Alder (DA) reactions, a simple amine is used as a catalyst to form an iminium adduct as an electron-withdrawing group that speeds up reaction with the diene. Now iminium catalysis is identified in Diels–Alderase (DAase) reactions, enabling to substantially broaden the DAase platform.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.