Optimizing Hydrazine Activation on Dual-Site Co-Zn Catalysts for Direct Hydrazine-Hydrogen Peroxide Fuel Cells

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Qian Liu, Junwei Han, Yue Yang, Zerui Chen, Hao Bin Wu
{"title":"Optimizing Hydrazine Activation on Dual-Site Co-Zn Catalysts for Direct Hydrazine-Hydrogen Peroxide Fuel Cells","authors":"Qian Liu,&nbsp;Junwei Han,&nbsp;Yue Yang,&nbsp;Zerui Chen,&nbsp;Hao Bin Wu","doi":"10.1002/idm2.12227","DOIUrl":null,"url":null,"abstract":"<p>Direct hydrazine-hydrogen peroxide fuel cells (DHzHPFCs) offer unique advantages for air-independent applications, but their commercialization is impeded by the lack of high-performance and low-cost catalysts. This study reports a novel dual-site Co-Zn catalyst designed to enhance the hydrazine oxidation reaction (HzOR) activity. Density functional theory calculations suggested that incorporating Zn into Co catalysts can weaken the binding strength of the crucial N<sub>2</sub>H<sub>3</sub>* intermediate, which limits the rate-determining N<sub>2</sub>H<sub>3</sub>* desorption step. The synthesized p-Co<sub>9</sub>Zn<sub>1</sub> catalyst exhibited a remarkably low reaction potential of −0.15 V versus RHE at 10 mA cm<sup>−2</sup>, outperforming monometallic Co catalysts. Experimental and computational analyses revealed dual active sites at the Co/ZnO interface, which facilitate N<sub>2</sub>H<sub>3</sub>* desorption and subsequent N<sub>2</sub>H<sub>2</sub>* formation. A liquid N<sub>2</sub>H<sub>4</sub>-H<sub>2</sub>O<sub>2</sub> fuel cell with p-Co<sub>9</sub>Zn<sub>1</sub> catalyst achieved a high open circuit voltage of 1.916 V and a maximum power density of 195 mW cm<sup>−2</sup>, demonstrating the potential application of the dual-site Co-Zn catalyst. This rational design strategy of tuning the N<sub>2</sub>H<sub>3</sub>* binding energy through bimetallic interactions provides a pathway for developing efficient and economical non-precious metal electrocatalysts for DHzHPFCs.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"300-308"},"PeriodicalIF":24.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12227","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Direct hydrazine-hydrogen peroxide fuel cells (DHzHPFCs) offer unique advantages for air-independent applications, but their commercialization is impeded by the lack of high-performance and low-cost catalysts. This study reports a novel dual-site Co-Zn catalyst designed to enhance the hydrazine oxidation reaction (HzOR) activity. Density functional theory calculations suggested that incorporating Zn into Co catalysts can weaken the binding strength of the crucial N2H3* intermediate, which limits the rate-determining N2H3* desorption step. The synthesized p-Co9Zn1 catalyst exhibited a remarkably low reaction potential of −0.15 V versus RHE at 10 mA cm−2, outperforming monometallic Co catalysts. Experimental and computational analyses revealed dual active sites at the Co/ZnO interface, which facilitate N2H3* desorption and subsequent N2H2* formation. A liquid N2H4-H2O2 fuel cell with p-Co9Zn1 catalyst achieved a high open circuit voltage of 1.916 V and a maximum power density of 195 mW cm−2, demonstrating the potential application of the dual-site Co-Zn catalyst. This rational design strategy of tuning the N2H3* binding energy through bimetallic interactions provides a pathway for developing efficient and economical non-precious metal electrocatalysts for DHzHPFCs.

Abstract Image

二元Co-Zn催化剂在肼-过氧化氢直接燃料电池上的活化优化
直接肼-过氧化氢燃料电池(dhzhpfc)为不依赖空气的应用提供了独特的优势,但由于缺乏高性能和低成本的催化剂,其商业化受到阻碍。本研究报道了一种新型的双位点Co-Zn催化剂,旨在提高肼氧化反应(HzOR)的活性。密度泛函理论计算表明,在Co催化剂中加入Zn会削弱关键的N2H3*中间体的结合强度,从而限制了决定速率的N2H3*解吸步骤。合成的p-Co9Zn1催化剂在10 mA cm−2下的反应电位为- 0.15 V,优于单金属Co催化剂。实验和计算分析表明,Co/ZnO界面存在双活性位点,有利于N2H3*的解吸和N2H2*的生成。采用p-Co9Zn1催化剂制备的n2h2 - h2o2液体燃料电池,获得了1.916 V的高开路电压和195 mW cm−2的最大功率密度,证明了Co-Zn催化剂的潜在应用前景。这种通过双金属相互作用调节N2H3*结合能的合理设计策略,为开发高效、经济的dhzhpfc非贵金属电催化剂提供了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信