Tracing Pan-Canadian Arctic Water Masses and Dissolved Inorganic Carbon Cycling Using Stable and Radiocarbon Isotopes

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
L. Jasperse, B. G. T. Else, L. A. Miller, G. Nickoloff, J. Walker, A. E. Fox, B. D. Walker
{"title":"Tracing Pan-Canadian Arctic Water Masses and Dissolved Inorganic Carbon Cycling Using Stable and Radiocarbon Isotopes","authors":"L. Jasperse,&nbsp;B. G. T. Else,&nbsp;L. A. Miller,&nbsp;G. Nickoloff,&nbsp;J. Walker,&nbsp;A. E. Fox,&nbsp;B. D. Walker","doi":"10.1029/2024GB008179","DOIUrl":null,"url":null,"abstract":"<p>The Canadian Arctic is warming four times faster than the global average, yet the impact of this perturbation on the marine carbon cycle remains unknown. Dissolved inorganic carbon (DIC) stable isotope (δ<sup>13</sup>C) and radiocarbon (Δ<sup>14</sup>C) values are powerful tools for tracing water mass transport, residence times and carbon cycling. While the hydrography of the Canadian Arctic Archipelago (CAA) is well documented, few DIC δ<sup>13</sup>C and Δ<sup>14</sup>C values exist for the region. Here, we present new DIC δ<sup>13</sup>C and Δ<sup>14</sup>C depth profiles from 19 stations across the CAA sampled in 2021 and place them into the context of five recently published Baffin Bay values. CAA DIC δ<sup>13</sup>C and Δ<sup>14</sup>C values ranged from −0.68‰ to +1.86‰, and −90.7 to +49.5‰, respectively. Several negative DIC Δ<sup>14</sup>C values (−44.7‰ and −51.9‰) were observed near the Mackenzie River, indicating riverine permafrost carbon is actively incorporated into the nearshore DIC pool. “Bomb” DIC Δ<sup>14</sup>C values in the Kitikmeot Sea were attributed to enhanced tidal mixing and heterotrophy together with high regional water mass residence times. A comparison of historical DIC Δ<sup>14</sup>C depth profiles from 2009 to 2021 reveals significant dilution of “bomb” <sup>14</sup>C and minor contributions (2.1%–4.4%) of fossil anthropogenic CO<sub>2</sub> within Pacific Summer Water (PSW), Pacific Winter Water (PWW) and Atlantic Fram Strait Water (ATL<sub>FS</sub>) in the Beaufort Sea. Finally, the contrast between deep Beaufort Sea and Baffin Bay DIC δ<sup>13</sup>C and Δ<sup>14</sup>C values reveal differences in residence time and carbon sources in the two regions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008179","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008179","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Canadian Arctic is warming four times faster than the global average, yet the impact of this perturbation on the marine carbon cycle remains unknown. Dissolved inorganic carbon (DIC) stable isotope (δ13C) and radiocarbon (Δ14C) values are powerful tools for tracing water mass transport, residence times and carbon cycling. While the hydrography of the Canadian Arctic Archipelago (CAA) is well documented, few DIC δ13C and Δ14C values exist for the region. Here, we present new DIC δ13C and Δ14C depth profiles from 19 stations across the CAA sampled in 2021 and place them into the context of five recently published Baffin Bay values. CAA DIC δ13C and Δ14C values ranged from −0.68‰ to +1.86‰, and −90.7 to +49.5‰, respectively. Several negative DIC Δ14C values (−44.7‰ and −51.9‰) were observed near the Mackenzie River, indicating riverine permafrost carbon is actively incorporated into the nearshore DIC pool. “Bomb” DIC Δ14C values in the Kitikmeot Sea were attributed to enhanced tidal mixing and heterotrophy together with high regional water mass residence times. A comparison of historical DIC Δ14C depth profiles from 2009 to 2021 reveals significant dilution of “bomb” 14C and minor contributions (2.1%–4.4%) of fossil anthropogenic CO2 within Pacific Summer Water (PSW), Pacific Winter Water (PWW) and Atlantic Fram Strait Water (ATLFS) in the Beaufort Sea. Finally, the contrast between deep Beaufort Sea and Baffin Bay DIC δ13C and Δ14C values reveal differences in residence time and carbon sources in the two regions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信