Contrasting the Marine Biogeochemical Cycles of Iron and Scandium in the California Current System

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY
Claire P. Till, Matthew P. Hurst, Robert B. Freiberger, Daniel C. Ohnemus, Benjamin S. Twining, Adrian Marchetti, Tyler H. Coale, Emily Pierce
{"title":"Contrasting the Marine Biogeochemical Cycles of Iron and Scandium in the California Current System","authors":"Claire P. Till,&nbsp;Matthew P. Hurst,&nbsp;Robert B. Freiberger,&nbsp;Daniel C. Ohnemus,&nbsp;Benjamin S. Twining,&nbsp;Adrian Marchetti,&nbsp;Tyler H. Coale,&nbsp;Emily Pierce","doi":"10.1029/2024JC022087","DOIUrl":null,"url":null,"abstract":"<p>The oceanic biogeochemical cycling of iron is globally important yet difficult to fully understand due to the many chemical processes involved. There is potential to use scandium, which has a similar ionic size and charge density to trivalent iron but lacks redox cycling, as a simpler analog for specific parts of the iron cycle, if we can sufficiently develop our understanding of scandium's reactivity. Here we move closer to this understanding. We look at particle reactivity and solubility through a 24-hr incubation experiment: 5 nmol/kg of dissolved scandium and/or iron were added to filtered and unfiltered California Current System water. Particulate scandium formed only in the unfiltered treatments, at a quantity unlikely to have been taken up biologically. This is the first direct observation of scavenging of scandium, an attribute shared with iron. Our results also serve as the first test of scandium solubility in seawater: 1.9 nmol/kg of dissolved scandium was stable in the filtered treatment, 50 times more than the highest natural concentrations so far observed. This indicates that, in contrast to iron, scandium's oceanic cycling is unlikely to be influenced by solubility limits. We also compare particulate depth profiles: labile particulate iron was disproportionally higher than that of scandium in shelf-influenced samples, likely due to iron reductively dissolving in the sediments, which scandium cannot do, and then precipitating in oxic seawater. Due to this combination of behaviors, our results suggest that paired observations of scandium and iron may help distinguish between iron sourced from sediment resuspension and reductive dissolution.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC022087","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The oceanic biogeochemical cycling of iron is globally important yet difficult to fully understand due to the many chemical processes involved. There is potential to use scandium, which has a similar ionic size and charge density to trivalent iron but lacks redox cycling, as a simpler analog for specific parts of the iron cycle, if we can sufficiently develop our understanding of scandium's reactivity. Here we move closer to this understanding. We look at particle reactivity and solubility through a 24-hr incubation experiment: 5 nmol/kg of dissolved scandium and/or iron were added to filtered and unfiltered California Current System water. Particulate scandium formed only in the unfiltered treatments, at a quantity unlikely to have been taken up biologically. This is the first direct observation of scavenging of scandium, an attribute shared with iron. Our results also serve as the first test of scandium solubility in seawater: 1.9 nmol/kg of dissolved scandium was stable in the filtered treatment, 50 times more than the highest natural concentrations so far observed. This indicates that, in contrast to iron, scandium's oceanic cycling is unlikely to be influenced by solubility limits. We also compare particulate depth profiles: labile particulate iron was disproportionally higher than that of scandium in shelf-influenced samples, likely due to iron reductively dissolving in the sediments, which scandium cannot do, and then precipitating in oxic seawater. Due to this combination of behaviors, our results suggest that paired observations of scandium and iron may help distinguish between iron sourced from sediment resuspension and reductive dissolution.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信