Rudolph J. Kashinga, Xuezhi Cao, Lukas Masseling, Felix Vogt, Nicole Schaaps, Liguo Zhao
{"title":"Effects of Heat Treatment on Microstructure Change and Mechanical Performance of Additively Manufactured 316L Stainless Steel Stents","authors":"Rudolph J. Kashinga, Xuezhi Cao, Lukas Masseling, Felix Vogt, Nicole Schaaps, Liguo Zhao","doi":"10.1002/jbm.a.37904","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Currently, percutaneous coronary intervention, based on stenting, is employed to provide scaffolding support to correct occlusion and diminished blood supply caused by atherosclerosis. To guarantee procedural efficacy and enhanced structural integrity of stents, further developments of stent materials and manufacturing methods are particularly required. In this paper, 316L stainless steel stents fabricated by additive manufacturing are studied through heat treatment, microstructural characterization, and mechanical deformation in vitro. After solution heat treatment conducted at 1200°C for durations ranging from 1 to 4 h, coarsening of columnar grains and changes in the grain boundary characters were observed, indicating the potential of microstructure modification through heat treatment. Electrochemical polishing can effectively improve surface quality by dissolving surface imperfections caused by partially sintered powders and uneven solidification processes, characteristics of additively manufactured parts. Mechanical deformation behaviors are evaluated by expansion tests before and after heat treatment. Specifically, free expansion tests are carried out to assess the mechanical performance of the stent alone, while in vitro mechanical performances are evaluated using silicone arteries filled with silicone plaques, corresponding to a stenosis rate of 70%. Coarsened grain microstructures in heat-treated stents lead to improved expansion flexibility, reduced dog-boning ratio, and slightly increased recoil, as compared to the as-printed stents. Results demonstrate the viability of improving the mechanical performance of additively manufactured 316L stainless steel stents through heat treatment process.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37904","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, percutaneous coronary intervention, based on stenting, is employed to provide scaffolding support to correct occlusion and diminished blood supply caused by atherosclerosis. To guarantee procedural efficacy and enhanced structural integrity of stents, further developments of stent materials and manufacturing methods are particularly required. In this paper, 316L stainless steel stents fabricated by additive manufacturing are studied through heat treatment, microstructural characterization, and mechanical deformation in vitro. After solution heat treatment conducted at 1200°C for durations ranging from 1 to 4 h, coarsening of columnar grains and changes in the grain boundary characters were observed, indicating the potential of microstructure modification through heat treatment. Electrochemical polishing can effectively improve surface quality by dissolving surface imperfections caused by partially sintered powders and uneven solidification processes, characteristics of additively manufactured parts. Mechanical deformation behaviors are evaluated by expansion tests before and after heat treatment. Specifically, free expansion tests are carried out to assess the mechanical performance of the stent alone, while in vitro mechanical performances are evaluated using silicone arteries filled with silicone plaques, corresponding to a stenosis rate of 70%. Coarsened grain microstructures in heat-treated stents lead to improved expansion flexibility, reduced dog-boning ratio, and slightly increased recoil, as compared to the as-printed stents. Results demonstrate the viability of improving the mechanical performance of additively manufactured 316L stainless steel stents through heat treatment process.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.