On the Iitaka volumes of log canonical surfaces and threefolds

IF 1 2区 数学 Q1 MATHEMATICS
Guodu Chen, Jingjun Han, Wenfei Liu
{"title":"On the Iitaka volumes of log canonical surfaces and threefolds","authors":"Guodu Chen,&nbsp;Jingjun Han,&nbsp;Wenfei Liu","doi":"10.1112/jlms.70132","DOIUrl":null,"url":null,"abstract":"<p>Given positive integers <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$d\\geqslant \\kappa$</annotation>\n </semantics></math> and a subset <span></span><math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n <mo>⊂</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>$\\Gamma \\subset [0,1]$</annotation>\n </semantics></math>, let <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> denote the set of Iitaka volumes of <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional projective log canonical pairs <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(X, B)$</annotation>\n </semantics></math> such that the Iitaka–Kodaira dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>(</mo>\n <msub>\n <mi>K</mi>\n <mi>X</mi>\n </msub>\n <mo>+</mo>\n <mi>B</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\kappa (K_X+B)=\\kappa$</annotation>\n </semantics></math> and the coefficients of <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> come from <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math>. In this paper, we show that, if <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> satisfies the descending chain condition, then so does <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\leqslant 3$</annotation>\n </semantics></math>. In case <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩽</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\leqslant 3$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\kappa =1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>Γ</mi>\n <annotation>$\\Gamma$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>Ivol</mo>\n <mi>lc</mi>\n <mi>Γ</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>κ</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Ivol}_\\mathrm{lc}^\\Gamma (d,\\kappa)$</annotation>\n </semantics></math> are shown to share more topological properties, such as closedness in <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math> and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional klt pairs with Iitaka dimension <span></span><math>\n <semantics>\n <mrow>\n <mo>⩾</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\geqslant d-2$</annotation>\n </semantics></math> satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 0\\rbrace$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace 0,1\\rbrace$</annotation>\n </semantics></math>. In particular, the minima as well as the minimal accumulation points are found in these cases.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70132","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given positive integers d κ $d\geqslant \kappa$ and a subset Γ [ 0 , 1 ] $\Gamma \subset [0,1]$ , let Ivol lc Γ ( d , κ ) $\operatorname{Ivol}_\mathrm{lc}^\Gamma (d,\kappa)$ denote the set of Iitaka volumes of d $d$ -dimensional projective log canonical pairs ( X , B ) $(X, B)$ such that the Iitaka–Kodaira dimension κ ( K X + B ) = κ $\kappa (K_X+B)=\kappa$ and the coefficients of B $B$ come from Γ $\Gamma$ . In this paper, we show that, if Γ $\Gamma$ satisfies the descending chain condition, then so does Ivol lc Γ ( d , κ ) $\operatorname{Ivol}_\mathrm{lc}^\Gamma (d,\kappa)$ for d 3 $d\leqslant 3$ . In case d 3 $d\leqslant 3$ and κ = 1 $\kappa =1$ , Γ $\Gamma$ and Ivol lc Γ ( d , κ ) $\operatorname{Ivol}_\mathrm{lc}^\Gamma (d,\kappa)$ are shown to share more topological properties, such as closedness in R $\mathbb {R}$ and local finiteness of accumulation complexity. In higher dimensions, we show that the set of Iitaka volumes for d $d$ -dimensional klt pairs with Iitaka dimension d 2 $\geqslant d-2$ satisfies the DCC, partially confirming a conjecture of Zhan Li. We give a more detailed description of the sets of Iitaka volumes for the following classes of projective log canonical surfaces: (1) smooth properly elliptic surfaces, (2) projective log canonical surfaces with coefficients from { 0 } $\lbrace 0\rbrace$ or { 0 , 1 } $\lbrace 0,1\rbrace$ . In particular, the minima as well as the minimal accumulation points are found in these cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信