Xiuyun Zhang, Guidong Zhang, Samson S. Yu, Zhenyu Yi
{"title":"Optimized Phase-shift Tuning via Equivalent Small Parameter Modeling for Ripple Reduction in Asymmetric Parallel Multi-Module DC-DC Converters","authors":"Xiuyun Zhang, Guidong Zhang, Samson S. Yu, Zhenyu Yi","doi":"10.1049/pel2.70025","DOIUrl":null,"url":null,"abstract":"<p>In photovoltaic power generation applications, multiple low-voltage PV modules must be boosted and connected in parallel for high power output. However, due to the variability of PV energy input, the parallel DC-DC converter modules often operate under asymmetric conditions, which deteriorates bus voltage ripple and reduces system stability and component lifespan. To address these issues, this paper proposes an optimal phase-shift modulation method with asymmetric phase shifts to effectively suppress the ripples at the point of common coupling of parallel-connected converters. To do so, a model for the output voltage ripple of boost and buck–boost parallel converter is established using the equivalent small parameter method (ESPM) with the optimal phase-shift angle determined by this modulation approach. Furthermore, a triple-loop current-sharing control strategy is implemented to ensure current sharing among the modules, enhancing the overall ripple suppression capability of the proposed modulation technique. Simulation and experimental results indicate that this integrated approach significantly improves the performance and stability of parallel converter systems.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In photovoltaic power generation applications, multiple low-voltage PV modules must be boosted and connected in parallel for high power output. However, due to the variability of PV energy input, the parallel DC-DC converter modules often operate under asymmetric conditions, which deteriorates bus voltage ripple and reduces system stability and component lifespan. To address these issues, this paper proposes an optimal phase-shift modulation method with asymmetric phase shifts to effectively suppress the ripples at the point of common coupling of parallel-connected converters. To do so, a model for the output voltage ripple of boost and buck–boost parallel converter is established using the equivalent small parameter method (ESPM) with the optimal phase-shift angle determined by this modulation approach. Furthermore, a triple-loop current-sharing control strategy is implemented to ensure current sharing among the modules, enhancing the overall ripple suppression capability of the proposed modulation technique. Simulation and experimental results indicate that this integrated approach significantly improves the performance and stability of parallel converter systems.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf