Optimized Phase-shift Tuning via Equivalent Small Parameter Modeling for Ripple Reduction in Asymmetric Parallel Multi-Module DC-DC Converters

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiuyun Zhang, Guidong Zhang, Samson S. Yu, Zhenyu Yi
{"title":"Optimized Phase-shift Tuning via Equivalent Small Parameter Modeling for Ripple Reduction in Asymmetric Parallel Multi-Module DC-DC Converters","authors":"Xiuyun Zhang,&nbsp;Guidong Zhang,&nbsp;Samson S. Yu,&nbsp;Zhenyu Yi","doi":"10.1049/pel2.70025","DOIUrl":null,"url":null,"abstract":"<p>In photovoltaic power generation applications, multiple low-voltage PV modules must be boosted and connected in parallel for high power output. However, due to the variability of PV energy input, the parallel DC-DC converter modules often operate under asymmetric conditions, which deteriorates bus voltage ripple and reduces system stability and component lifespan. To address these issues, this paper proposes an optimal phase-shift modulation method with asymmetric phase shifts to effectively suppress the ripples at the point of common coupling of parallel-connected converters. To do so, a model for the output voltage ripple of boost and buck–boost parallel converter is established using the equivalent small parameter method (ESPM) with the optimal phase-shift angle determined by this modulation approach. Furthermore, a triple-loop current-sharing control strategy is implemented to ensure current sharing among the modules, enhancing the overall ripple suppression capability of the proposed modulation technique. Simulation and experimental results indicate that this integrated approach significantly improves the performance and stability of parallel converter systems.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In photovoltaic power generation applications, multiple low-voltage PV modules must be boosted and connected in parallel for high power output. However, due to the variability of PV energy input, the parallel DC-DC converter modules often operate under asymmetric conditions, which deteriorates bus voltage ripple and reduces system stability and component lifespan. To address these issues, this paper proposes an optimal phase-shift modulation method with asymmetric phase shifts to effectively suppress the ripples at the point of common coupling of parallel-connected converters. To do so, a model for the output voltage ripple of boost and buck–boost parallel converter is established using the equivalent small parameter method (ESPM) with the optimal phase-shift angle determined by this modulation approach. Furthermore, a triple-loop current-sharing control strategy is implemented to ensure current sharing among the modules, enhancing the overall ripple suppression capability of the proposed modulation technique. Simulation and experimental results indicate that this integrated approach significantly improves the performance and stability of parallel converter systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Power Electronics
IET Power Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
5.50
自引率
10.00%
发文量
195
审稿时长
5.1 months
期刊介绍: IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes: Applications: Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances. Technologies: Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies. Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials. Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems. Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques. Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material. Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest. Special Issues. Current Call for papers: Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信