{"title":"Modelling the Effects of Vegetation Distribution and Density on Hydrological Connectivity and Water Age in a River Delta","authors":"Madoche Jean Louis, Matthew Hiatt","doi":"10.1002/eco.2741","DOIUrl":null,"url":null,"abstract":"<p>Water transport timescales (WTTs) quantify how long it takes for water to travel through or remain in a system and are often cast as indicators of ecosystem function and health. Such timescales are known to be affected by vegetation in various environments. We quantify the impact of floodplain vegetation on WTTs within the Wax Lake Delta (WLD), a river delta system in Louisiana, USA, using a high-resolution Delft3D Flexible Mesh (DFM) model incorporating vegetation-induced flow resistance. We show that increased vegetation density leads to extended WTTs within vegetated sections of WLD while fostering flow localization and accelerating transport within distributary channels. We find that the presence or absence of floodplain vegetation significantly influences the volumetric flow directed towards the floodplain, with spatial distribution exerting more control than vegetation density. Vegetation density and spatial arrangement have minimal impact on flow directed out of the deltaic floodplain, indicating that vegetation does not constrain flow across the bayward boundary. Furthermore, network-scale water age distribution remains largely unaffected by vegetation density and spatial arrangement, except for slight modifications in the distribution's right tail. These findings contribute to a better understanding of how vegetation affects deltaic hydrology across scales, highlighting the importance of considering multi-scale vegetation influences for coastal restoration and management strategies.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eco.2741","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2741","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water transport timescales (WTTs) quantify how long it takes for water to travel through or remain in a system and are often cast as indicators of ecosystem function and health. Such timescales are known to be affected by vegetation in various environments. We quantify the impact of floodplain vegetation on WTTs within the Wax Lake Delta (WLD), a river delta system in Louisiana, USA, using a high-resolution Delft3D Flexible Mesh (DFM) model incorporating vegetation-induced flow resistance. We show that increased vegetation density leads to extended WTTs within vegetated sections of WLD while fostering flow localization and accelerating transport within distributary channels. We find that the presence or absence of floodplain vegetation significantly influences the volumetric flow directed towards the floodplain, with spatial distribution exerting more control than vegetation density. Vegetation density and spatial arrangement have minimal impact on flow directed out of the deltaic floodplain, indicating that vegetation does not constrain flow across the bayward boundary. Furthermore, network-scale water age distribution remains largely unaffected by vegetation density and spatial arrangement, except for slight modifications in the distribution's right tail. These findings contribute to a better understanding of how vegetation affects deltaic hydrology across scales, highlighting the importance of considering multi-scale vegetation influences for coastal restoration and management strategies.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.