Tyler G. Beames, Megan Y. Stewart, Rachel B. Walkup, Jules B. Panksepp, Robert J. Lipinski
{"title":"Examining the Neurodevelopmental Impact of Sonic Hedgehog Pathway Inhibition in Mice","authors":"Tyler G. Beames, Megan Y. Stewart, Rachel B. Walkup, Jules B. Panksepp, Robert J. Lipinski","doi":"10.1002/bdr2.2466","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Neurodevelopmental disorders (NDDs) are common, highly variable, and etiologically complex. Identifying environmental factors that adversely impact prenatal brain development is a direct path to NDD prevention. Small molecule disruption of the Sonic hedgehog (Shh) signaling pathway, a key regulator of craniofacial morphogenesis, can lead to overt face and forebrain malformations that produce profound neurological deficits. However, whether environmental disruption of Shh signaling can cause subtle neurodevelopmental outcomes in the absence of overt facial malformations was unknown.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We developed a dietary model of Shh signaling inhibition using the specific Shh pathway antagonist vismodegib. C57BL/6J mice were fed control chow or chow containing 25, 75, or 225 ppm vismodegib from gestational day (GD)4 through GD12 to target Shh signaling during craniofacial morphogenesis. Impacts of Shh pathway disruption on face and forebrain development were examined in exposed embryos and fetuses, and behavioral characteristics were assessed in adult mice.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Exposure to chow containing 225 ppm vismodegib resulted in abnormal forebrain patterning at GD11, face and brain malformations at GD17, and early postnatal mortality, while lower treatment groups appeared phenotypically normal. Adult mice exposed to 25 and 75 ppm vismodegib outperformed control mice on repeated rotarod sessions, but treated mice did not significantly differ from control animals in open field exploration, marble burying, olfactory discrimination and detection, or fear conditioning assays.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Under the examined conditions, prenatal Shh disruption did not produce robust neurobehavioral differences in the absence of craniofacial malformations.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":"117 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdr2.2466","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2466","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Neurodevelopmental disorders (NDDs) are common, highly variable, and etiologically complex. Identifying environmental factors that adversely impact prenatal brain development is a direct path to NDD prevention. Small molecule disruption of the Sonic hedgehog (Shh) signaling pathway, a key regulator of craniofacial morphogenesis, can lead to overt face and forebrain malformations that produce profound neurological deficits. However, whether environmental disruption of Shh signaling can cause subtle neurodevelopmental outcomes in the absence of overt facial malformations was unknown.
Methods
We developed a dietary model of Shh signaling inhibition using the specific Shh pathway antagonist vismodegib. C57BL/6J mice were fed control chow or chow containing 25, 75, or 225 ppm vismodegib from gestational day (GD)4 through GD12 to target Shh signaling during craniofacial morphogenesis. Impacts of Shh pathway disruption on face and forebrain development were examined in exposed embryos and fetuses, and behavioral characteristics were assessed in adult mice.
Results
Exposure to chow containing 225 ppm vismodegib resulted in abnormal forebrain patterning at GD11, face and brain malformations at GD17, and early postnatal mortality, while lower treatment groups appeared phenotypically normal. Adult mice exposed to 25 and 75 ppm vismodegib outperformed control mice on repeated rotarod sessions, but treated mice did not significantly differ from control animals in open field exploration, marble burying, olfactory discrimination and detection, or fear conditioning assays.
Conclusions
Under the examined conditions, prenatal Shh disruption did not produce robust neurobehavioral differences in the absence of craniofacial malformations.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.