The Shape of the Brain's Connections Is Predictive of Cognitive Performance: An Explainable Machine Learning Study

IF 3.5 2区 医学 Q1 NEUROIMAGING
Yui Lo, Yuqian Chen, Dongnan Liu, Wan Liu, Leo Zekelman, Jarrett Rushmore, Fan Zhang, Yogesh Rathi, Nikos Makris, Alexandra J. Golby, Weidong Cai, Lauren J. O'Donnell
{"title":"The Shape of the Brain's Connections Is Predictive of Cognitive Performance: An Explainable Machine Learning Study","authors":"Yui Lo,&nbsp;Yuqian Chen,&nbsp;Dongnan Liu,&nbsp;Wan Liu,&nbsp;Leo Zekelman,&nbsp;Jarrett Rushmore,&nbsp;Fan Zhang,&nbsp;Yogesh Rathi,&nbsp;Nikos Makris,&nbsp;Alexandra J. Golby,&nbsp;Weidong Cai,&nbsp;Lauren J. O'Donnell","doi":"10.1002/hbm.70166","DOIUrl":null,"url":null,"abstract":"<p>The shape of the brain's white matter connections is relatively unexplored in diffusion magnetic resonance imaging (dMRI) tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement two machine learning models (1D-CNN and Least Absolute Shrinkage and Selection Operator [LASSO]) to predict individual cognitive performance scores. We study a large-scale database from the Human Connectome Project Young Adult study (<i>n</i> = 1065). We apply an atlas-based fiber cluster parcellation (953 fiber clusters) to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models (using fivefold cross-validation) to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHapley Additive exPlanations (SHAP), to assess the importance of each fiber cluster for prediction. Our results demonstrate that fiber cluster shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are generally as effective for prediction as traditional microstructure and connectivity measures. The 1D-CNN model generally outperforms the LASSO method for prediction. Further interpretation and analysis using SHAP values from the 1D-CNN suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 5","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70166","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The shape of the brain's white matter connections is relatively unexplored in diffusion magnetic resonance imaging (dMRI) tractography analysis. While it is known that tract shape varies in populations and across the human lifespan, it is unknown if the variability in dMRI tractography-derived shape may relate to the brain's functional variability across individuals. This work explores the potential of leveraging tractography fiber cluster shape measures to predict subject-specific cognitive performance. We implement two machine learning models (1D-CNN and Least Absolute Shrinkage and Selection Operator [LASSO]) to predict individual cognitive performance scores. We study a large-scale database from the Human Connectome Project Young Adult study (n = 1065). We apply an atlas-based fiber cluster parcellation (953 fiber clusters) to the dMRI tractography of each individual. We compute 15 shape, microstructure, and connectivity features for each fiber cluster. Using these features as input, we train a total of 210 models (using fivefold cross-validation) to predict 7 different NIH Toolbox cognitive performance assessments. We apply an explainable AI technique, SHapley Additive exPlanations (SHAP), to assess the importance of each fiber cluster for prediction. Our results demonstrate that fiber cluster shape measures are predictive of individual cognitive performance. The studied shape measures, such as irregularity, diameter, total surface area, volume, and branch volume, are generally as effective for prediction as traditional microstructure and connectivity measures. The 1D-CNN model generally outperforms the LASSO method for prediction. Further interpretation and analysis using SHAP values from the 1D-CNN suggest that fiber clusters with features highly predictive of cognitive ability are widespread throughout the brain, including fiber clusters from the superficial association, deep association, cerebellar, striatal, and projection pathways. This study demonstrates the strong potential of shape descriptors to enhance the study of the brain's white matter and its relationship to cognitive function.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信