Characterisation of Five Natural Magnetite Reference Materials for In Situ Iron Isotope Measurement with Application to Magmatic Ni-Cu Sulfide Mineralisation

IF 2.7 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yantong Feng, Wen Zhang, Yawen Bao, Xianli Zeng, Hong Liu, Tao Luo, Zhaochu Hu, Mingjie Zhang, Yu Wang, Yan Yang, Shengjiang Liu
{"title":"Characterisation of Five Natural Magnetite Reference Materials for In Situ Iron Isotope Measurement with Application to Magmatic Ni-Cu Sulfide Mineralisation","authors":"Yantong Feng,&nbsp;Wen Zhang,&nbsp;Yawen Bao,&nbsp;Xianli Zeng,&nbsp;Hong Liu,&nbsp;Tao Luo,&nbsp;Zhaochu Hu,&nbsp;Mingjie Zhang,&nbsp;Yu Wang,&nbsp;Yan Yang,&nbsp;Shengjiang Liu","doi":"10.1111/ggr.12592","DOIUrl":null,"url":null,"abstract":"<p>Iron isotope ratios in magnetite have been widely used to reveal critical geological and biological processes. Laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) is ideally suited for measurement of Fe isotope ratios, however the lack of suitable reference materials poses a significant challenge for <i>in situ</i> Fe isotopic measurements in magnetites. In this study, five high-quality natural magnetite crystals were characterised for Fe isotope ratios using solution nebulisation (SN)-MC-ICP-MS and LA-MC-ICP-MS. The effects of LA-MC-ICP-MS analytical conditions were investigated to obtain precise and accurate Fe isotope ratios. The yielded intermediate measurement precisions for the δ<sup>56</sup>Fe values in the five investigated magnetites were ± 0.05–0.06‰ (2<i>s</i>) using SN-MC-ICP-MS and ± 0.08–0.14‰ (2<i>s</i>) using LA-MC-ICP-MS. Magnetites with homogeneous Fe isotopic compositions in hand-specimen measurements and microanalysis can serve as potential reference materials for <i>in situ</i> Fe isotopic measurement. Furthermore, the Fe isotope ratios in the magnetites from the Jinchuan Ni-Cu-PGE sulfide deposit were measured using LA-MC-ICP-MS with natural magnetite as the bracketing calibrator. The increase in the Fe isotopic composition with magmatic sulfide evolution was primarily dominated by oxygen fugacity (<i>f</i>O<sub>2</sub>) and hydrothermal fluids. This finding implies that the Fe isotopic composition of magnetite can serve as a potential geochemical indicator of magmatic Ni-Cu sulfide mineralisation.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"49 1","pages":"217-232"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12592","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Iron isotope ratios in magnetite have been widely used to reveal critical geological and biological processes. Laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) is ideally suited for measurement of Fe isotope ratios, however the lack of suitable reference materials poses a significant challenge for in situ Fe isotopic measurements in magnetites. In this study, five high-quality natural magnetite crystals were characterised for Fe isotope ratios using solution nebulisation (SN)-MC-ICP-MS and LA-MC-ICP-MS. The effects of LA-MC-ICP-MS analytical conditions were investigated to obtain precise and accurate Fe isotope ratios. The yielded intermediate measurement precisions for the δ56Fe values in the five investigated magnetites were ± 0.05–0.06‰ (2s) using SN-MC-ICP-MS and ± 0.08–0.14‰ (2s) using LA-MC-ICP-MS. Magnetites with homogeneous Fe isotopic compositions in hand-specimen measurements and microanalysis can serve as potential reference materials for in situ Fe isotopic measurement. Furthermore, the Fe isotope ratios in the magnetites from the Jinchuan Ni-Cu-PGE sulfide deposit were measured using LA-MC-ICP-MS with natural magnetite as the bracketing calibrator. The increase in the Fe isotopic composition with magmatic sulfide evolution was primarily dominated by oxygen fugacity (fO2) and hydrothermal fluids. This finding implies that the Fe isotopic composition of magnetite can serve as a potential geochemical indicator of magmatic Ni-Cu sulfide mineralisation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geostandards and Geoanalytical Research
Geostandards and Geoanalytical Research 地学-地球科学综合
CiteScore
7.10
自引率
18.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信